Lecture 24 : Skorokhod embedding

MATH275B - Winter 2012 *Lecturer: Sebastien Roch*

References: [Dur10, Section 8.6, 8.8], [Lig10, Section 1.10], [MP10, Section 5.1, 5.3].

1 Previous class

Recall:

THM 24.1 (Wald's lemma for BM) Let ${B(t)}$ be a standard BM and T a stop*ping time with respect to* $\{\mathcal{F}^+(t)\}$ *such that* $\mathbb{E}[T] < +\infty$ *. Then*

 $\mathbb{E}[B(T)] = 0.$

THM 24.2 (Wald's second lemma) Let ${B(t)}$ be a standard BM and T a stop*ping time with respect to* $\{\mathcal{F}^+(t)\}$ *such that* $\mathbb{E}[T] < +\infty$ *. Then*

$$
\mathbb{E}[B(T)^2] = E[T].
$$

THM 24.3 *Let* ${B(t)}$ *be a standard BM. For* $a < 0 < b$ *let*

$$
T = \inf\{t \ge 0 : B(t) \in \{a, b\}\}.
$$

Then

$$
\mathbb{P}[B(T) = a] = \frac{b}{|a| + b}.
$$

Moreover,

 $\mathbb{E}[T] = |a|b.$

2 Skorokhod embedding

THM 24.4 (Skorokhod embedding) Suppose $\{B(t)\}_t$ is a standard BM and that X is a RV with $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^2] < +\infty$. Then there exists a stopping time T with respect to $\{F^+(t)\}_t$ such that $B(T)$ has the law of X and $\mathbb{E}[T] = \mathbb{E}[X^2]$.

The proof uses a binary splitting MG:

DEF 24.5 *A* $\{X_n\}_n$ *is* binary splitting *if, whenever the event*

$$
A(x_0,...,x_n) = \{X_0 = x_0,...,X_n = x_n\},\
$$

for some x_0, \ldots, x_n *, has positive probability, then the RV* X_{n+1} *conditioned on* $A(x_0, \ldots, x_n)$ *is supported on at most two values.*

LEM 24.6 *Let* X *be a RV with* $\mathbb{E}[X^2] < +\infty$ *. Then there is a binary splitting MG* ${X_n}_n$ *such that* $X_n \to X$ *almost surely and in* \mathcal{L}^2 *.*

Proof:(of Lemma) The MG is defined recursively. Let

$$
\mathcal{G}_0 = \{ \emptyset, \Omega \},
$$

and

 $X_0 = \mathbb{E}[X].$

For $n > 0$, we let

$$
\xi_n = \begin{cases} 1, & \text{if } X \ge X_n \\ -1, & \text{if } X < X_n, \end{cases}
$$

and

$$
\mathcal{G}_n = \sigma(\xi_0, \ldots, \xi_{n-1}),
$$

and

$$
X_n = \mathbb{E}[X \,|\, \mathcal{G}_n].
$$

Then $\{X_n\}_n$ is a binary splitting MG. It remains to prove the convergence claim. By (cJENSEN)

$$
\mathbb{E}[X_n^2] \le \mathbb{E}[X^2],
$$

so $\{X_n\}_n$ is bounded in \mathcal{L}^2 and we have by Lévy's upward theorem

$$
X_n \to X_\infty = \mathbb{E}[X \,|\, \mathcal{G}_\infty],
$$

almost surely and in \mathcal{L}^2 , where

$$
\mathcal{G}_{\infty} = \sigma\left(\bigcup_i \mathcal{G}_i\right).
$$

We need to show that $X = X_{\infty}$.

Lecture 24: Skorokhod embedding 3

CLAIM 24.7 *Almost surely,*

$$
\lim_{n} \xi_n(X - X_{n+1}) = |X - X_{\infty}|.
$$

We first finish the proof of the lemma. Note that

$$
\mathbb{E}[\xi_n(X - X_{n+1})] = \mathbb{E}[\xi_n \mathbb{E}[X - X_{n+1} | \mathcal{G}_{n+1}]] = 0.
$$

Since $\{\xi_n(X - X_{n+1})\}_n$ is bounded in \mathcal{L}^2 , the expectations converge and

$$
\mathbb{E}|X - X_{\infty}| = 0.
$$

Finally we prove the claim. If $X = X_{\infty}$, both sides are 0. If $X < X_{\infty}$, then for n large enough, $X < X_n$ and $\xi_n = -1$ by construction and the result holds. Similarly for the other case.

Proof:(of Theorem) Take a binary splitting MG as in the previous lemma. Since X_n conditioned on $A(x_0, \ldots, x_{n-1})$ is supported on two values, we can use the stopping time from last time and we get a sequence of stopping times

$$
T_0 \leq T_1 \leq \cdots \leq T_n \leq \cdots \uparrow T
$$

for some T such that

$$
B(T_n) \sim X_n,
$$

and

$$
\mathbb{E}[T_n] = \mathbb{E}[B(T_n)^2].
$$

By (MON) and \mathcal{L}^2 convergence

$$
\mathbb{E}[T] = \lim_{n} \mathbb{E}[T_n] = \lim_{n} \mathbb{E}[X_n^2] = \mathbb{E}[X].
$$

By continuity of paths,

$$
B(T_n) \to B(T), \quad \text{a.s.}
$$

and

$$
B(T) \sim X.
$$

 \blacksquare

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Lig10] Thomas M. Liggett. *Continuous time Markov processes*, volume 113 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, 2010. An introduction.
- [MP10] Peter Mörters and Yuval Peres. *Brownian motion*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.