Lecture 28 : Random walks: recurrence

MATH275B - Winter 2012

Lecturer: Sebastien Roch

References: [Dur10, Section 4.2].

1 Random walks and recurrence

DEF 28.1 A random walk (RW) on \mathbb{R}^d is an SP of the form:

$$S_n = \sum_{i \le n} X_i, \ n \ge 1$$

where the X_i s are iid in \mathbb{R}^d .

EX 28.2 (SRW on \mathbb{Z}^d) This is the special case:

$$\mathbb{P}[X_i = e_j] = \mathbb{P}[X_i = -e_j] = \frac{1}{2d},$$

for all j = 1, ..., d where e_j is the unit vector in the *j*-th direction.

DEF 28.3 We say that $x \in \mathbb{R}^d$ is a recurrent value if, for all $\varepsilon > 0$, $\mathbb{P}[||S_n - x|| < \varepsilon$ i.o.] = 1. Let V be the set of recurrent values. We say that S_n is transient if $V = \emptyset$, o.w. it is recurrent.

2 SRW on \mathbb{Z}

Recall Stirling's formula:

$$n! \sim n^n e^{-n} \sqrt{2\pi n}.$$

THM 28.4 (SRW on \mathbb{Z}) SRW on \mathbb{Z} is recurrent.

Proof: First note the periodicity. So we look at S_{2n} . Then

$$\mathbb{P}[S_{2n} = 0] = \binom{2n}{n} 2^{-2n}$$
$$\sim 2^{-2n} \frac{(2n)^{2n}}{(n^n)^2} \frac{\sqrt{2n}}{\sqrt{2\pi n}}$$
$$\sim \frac{1}{\sqrt{\pi n}}.$$

So

$$\sum_m \mathbb{P}[S_m = 0] = \infty.$$

Denote

$$T_0^{(n)} = \inf\{m > T_0^{(n-1)} : S_m = 0\}.$$

By the strong Markov property $\mathbb{P}[T_0^{(n)} < \infty] = \mathbb{P}[T_0 < \infty]^n$. Note that

$$\sum_{m} \mathbb{P}[S_{m} = 0] = \mathbb{E}\left[\sum_{m} \mathbb{1}_{S_{m}=0}\right]$$
$$= \mathbb{E}\left[\sum_{n} \mathbb{1}_{T_{0}^{(n)} < \infty}\right]$$
$$= \sum_{n} \mathbb{P}[T_{0}^{(n)} < \infty]$$
$$= \sum_{n} \mathbb{P}[T_{0} < \infty]^{n}$$
$$= \frac{1}{1 - \mathbb{P}[T_{0} < \infty]}.$$

So $\mathbb{P}[T_0 < \infty] = 1$.

3 SRW on \mathbb{Z}^2

Now X_1 is in \mathbb{Z}^2 and $\mathbb{P}[X_1 = (1, 0)] = \cdots = \mathbb{P}[X_1 = (0, -1)] = 1/4$.

THM 28.5 (SRW on \mathbb{Z}^2) *SRW on* \mathbb{Z}^2 *is recurrent.*

Proof: Let $R_n = (S_n^{(1)}, S_n^{(2)})$ where $S_n^{(i)}$ are independent SRW on \mathbb{Z} . Note that R_n is a SRW on \mathbb{Z}^2 rotated by 45 degrees. So the probability to be back at (0,0) is the same as for two independent SRW on \mathbb{Z} to be back at 0 simultaenously. Therefore,

$$\mathbb{P}[S_{2n} = (0,0)] = \mathbb{P}[S_{2n}^{(1)} = 0]^2 \sim \frac{1}{\pi n}$$

whose sum diverges.

4 SRW on \mathbb{Z}^3

Now X_1 is in \mathbb{Z}^3 and $\mathbb{P}[X_1 = (1, 0, 0)] = \cdots = \mathbb{P}[X_1 = (0, 0, -1)] = 1/6$. **THM 28.6 (SRW on** \mathbb{Z}^3) *SRW on* \mathbb{Z}^3 *is transient.* **Proof:** Note, since the number of steps in opposite directions has to be equal,

$$\mathbb{P}[S_{2n} = 0] = 6^{-2n} \sum_{j,k} \frac{(2n)!}{(j!k!(n-k-j)!)^2} \\ = 2^{-2n} \binom{2n}{n} \sum_{j,k} \left(3^{-n} \frac{n!}{j!k!(n-k-j)!}\right)^2 \\ \leq 2^{-2n} \binom{2n}{n} \max_{j,k} 3^{-n} \frac{n!}{j!k!(n-k-j)!},$$

where we used that $\sum_{j,k} a_{j,k}^2 \leq \max_{i,j} a_{j,k} \equiv a^*$ if $\sum_{j,k} a_{j,k} = 1$ and $a_{j,k} \geq 0$. Note that if j < n/3 and k > n/3 then

$$\frac{(j+1)!(k-1)!}{j!k!} = \frac{j+1}{k} \le 1.$$

That implies that the term in the max is maximized when j, k, (n - k - j) are roughly n/3. Using Stirling

$$\frac{n!}{j!k!(n-k-j)!} \sim \frac{n^n}{j^j k^k (n-k-j)^{n-k-j}} \sqrt{\frac{n}{jk(n-k-j)}} \frac{1}{2\pi} \sim C\frac{3^n}{n}.$$

Hence $\mathbb{P}[S_{2n} = 0] \sim Cn^{-3/2}$ which is summable and $\mathbb{P}[T_0 < \infty] < 1$.

COR 28.7 *SRW on* \mathbb{Z}^d *with* d > 3 *is transient.*

Proof: Let $R_n = (S_n^1, S_n^2, S_n^3)$. Let

$$U_m = \inf\{n > U_{m-1} : R_n \neq R_{U_{m-1}}\}.$$

Then R_{U_n} is a three-dimensional SRW. It visits (0, 0, 0) only finitely many times whp.

5 **RW** in \mathbb{R}^d

Now X_1 is in \mathbb{R}^d . See [Dur10, Section 3.2] for a proof of:

- S_n is recurrent in d = 1 if $S_n/n \to 0$ in probability
- S_n is recurrent in d = 2 if $S_n / \sqrt{n} \Rightarrow$ Gaussian
- S_n is recurrent in $d \ge 3$ if it is truly three-dimensional (for all $\theta \ne 0$, $\mathbb{P}[X_1 \cdot \theta \ne 0] > 0$)

References

[Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.