Lecture 28 : Random walks: recurrence

MATH275B - Winter 2012 *Lecturer: Sebastien Roch*

References: [Dur10, Section 4.2].

1 Random walks and recurrence

DEF 28.1 *A* random walk (RW) *on* \mathbb{R}^d *is an SP of the form:*

$$
S_n = \sum_{i \le n} X_i, \ n \ge 1
$$

where the X_i s are iid in \mathbb{R}^d .

EX 28.2 (SRW on \mathbb{Z}^d) This is the special case:

$$
\mathbb{P}[X_i = e_j] = \mathbb{P}[X_i = -e_j] = \frac{1}{2d},
$$

for all $j = 1, \ldots, d$ *where* e_j *is the unit vector in the j-th direction.*

DEF 28.3 *We say that* $x \in \mathbb{R}^d$ *is a recurrent value if, for all* $\varepsilon > 0$, $\mathbb{P}[\|S_n - x\| < \infty]$ ϵ *i.o.*] = 1*. Let V be the set of recurrent values. We say that* S_n *is transient if* $V = \emptyset$, *o.w.* it is recurrent.

2 SRW on Z

Recall Stirling's formula:

$$
n! \sim n^n e^{-n} \sqrt{2\pi n}.
$$

THM 28.4 (SRW on Z) *SRW on* Z *is recurrent.*

Proof: First note the periodicity. So we look at S_{2n} . Then

$$
\mathbb{P}[S_{2n} = 0] = {2n \choose n} 2^{-2n}
$$

$$
\sim 2^{-2n} \frac{(2n)^{2n}}{(n^n)^2} \frac{\sqrt{2n}}{\sqrt{2\pi n}}
$$

$$
\sim \frac{1}{\sqrt{\pi n}}.
$$

So

$$
\sum_m \mathbb{P}[S_m = 0] = \infty.
$$

Denote

$$
T_0^{(n)} = \inf\{m > T_0^{(n-1)} : S_m = 0\}.
$$

By the strong Markov property $\mathbb{P}[T_0^{(n)} < \infty] = \mathbb{P}[T_0 < \infty]^n.$ Note that

$$
\sum_{m} \mathbb{P}[S_m = 0] = \mathbb{E}[\sum_{m} \mathbb{1}_{S_m = 0}]
$$

$$
= \mathbb{E}[\sum_{n} \mathbb{1}_{T_0^{(n)} < \infty}]
$$

$$
= \sum_{n} \mathbb{P}[T_0^{(n)} < \infty]
$$

$$
= \sum_{n} \mathbb{P}[T_0 < \infty]^n
$$

$$
= \frac{1}{1 - \mathbb{P}[T_0 < \infty]}.
$$

So $\mathbb{P}[T_0 < \infty] = 1$.

3 SRW on \mathbb{Z}^2

Now X_1 is in \mathbb{Z}^2 and $\mathbb{P}[X_1 = (1,0)] = \cdots = \mathbb{P}[X_1 = (0,-1)] = 1/4$.

THM 28.5 (SRW on \mathbb{Z}^2) *SRW on* \mathbb{Z}^2 is recurrent.

Proof: Let $R_n = (S_n^{(1)}, S_n^{(2)})$ where $S_n^{(i)}$ are independent SRW on \mathbb{Z} . Note that R_n is a SRW on \mathbb{Z}^2 rotated by 45 degrees. So the probability to be back at $(0,0)$ is the same as for two independent SRW on Z to be back at 0 simultaenously. Therefore,

$$
\mathbb{P}[S_{2n} = (0,0)] = \mathbb{P}[S_{2n}^{(1)} = 0]^2 \sim \frac{1}{\pi n},
$$

whose sum diverges.

4 SRW on \mathbb{Z}^3

Now X_1 is in \mathbb{Z}^3 and $\mathbb{P}[X_1 = (1, 0, 0)] = \cdots = \mathbb{P}[X_1 = (0, 0, -1)] = 1/6.$ **THM 28.6 (SRW on** \mathbb{Z}^3) *SRW on* \mathbb{Z}^3 *is transient.*

П

 \blacksquare

Proof: Note, since the number of steps in opposite directions has to be equal,

$$
\mathbb{P}[S_{2n} = 0] = 6^{-2n} \sum_{j,k} \frac{(2n)!}{(j!k!(n-k-j)!)^2}
$$

= $2^{-2n} {2n \choose n} \sum_{j,k} \left(3^{-n} \frac{n!}{j!k!(n-k-j)!}\right)^2$
 $\leq 2^{-2n} {2n \choose n} \max_{j,k} 3^{-n} \frac{n!}{j!k!(n-k-j)!},$

where we used that $\sum_{j,k} a_{j,k}^2 \le \max_{i,j} a_{j,k} \equiv a^*$ if $\sum_{j,k} a_{j,k} = 1$ and $a_{j,k} \ge 0$. Note that if $j < n/3$ and $k > n/3$ then

$$
\frac{(j+1)!(k-1)!}{j!k!} = \frac{j+1}{k} \le 1.
$$

That implies that the term in the max is maximized when $j, k, (n - k - j)$ are roughly $n/3$. Using Stirling

$$
\frac{n!}{j!k!(n-k-j)!} \sim \frac{n^n}{j^jk^k(n-k-j)^{n-k-j}} \sqrt{\frac{n}{jk(n-k-j)}} \frac{1}{2\pi} \sim C \frac{3^n}{n}.
$$

Hence $\mathbb{P}[S_{2n} = 0] \sim Cn^{-3/2}$ which is summable and $\mathbb{P}[T_0 < \infty] < 1$.

COR 28.7 *SRW on* \mathbb{Z}^d *with* $d > 3$ *is transient.*

Proof: Let $R_n = (S_n^1, S_n^2, S_n^3)$. Let

$$
U_m = \inf\{n > U_{m-1} : R_n \neq R_{U_{m-1}}\}.
$$

Then R_{U_n} is a three-dimensional SRW. It visits $(0,0,0)$ only finitely many times whp. \blacksquare

5 RW in \mathbb{R}^d

Now X_1 is in \mathbb{R}^d . See [Dur10, Section 3.2] for a proof of:

- S_n is recurrent in $d = 1$ if $S_n/n \to 0$ in probability
- S_n is recurrent in $d = 2$ if $S_n / \sqrt{n} \Rightarrow$ Gaussian
- S_n is recurrent in $d \geq 3$ if it is truly three-dimensional (for all $\theta \neq 0$, $\mathbb{P}[X_1 \cdot \theta \neq 0] > 0$

References

[Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.