
Lecture 5 : Martingale convergence theorem

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Chapter 10], [Dur10, Section 5.2].

1 A natural gambling strategy

Recall that
(C •X)n =

∑
i≤n

Cn(Xn −Xn−1),

where Cn is predictable and Xn is a superMG, can be interpreted as your net win-
nings in a game. A natural strategy is to choose α < β and apply the following

• REPEAT

– Wait until X gets below α

– Play a unit stake until X gets above β and stop playing

• UNTIL TIME N

More formally, let
C1 = 1{X0 < α},

and

Cn = 1{Cn−1 = 1}1{Xn−1 ≤ β}+ 1{Cn−1 = 0}1{Xn−1 < α}.

Then {Cn} is predictable.

2 Upcrossings

Define the following stopping times. Let T0 = −1,

T2k−1 = inf{n > T2k−2 : Xn < α},

and
T2k = inf{n > T2k−1 : Xn > β}.
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The number of upcrossings of [α, β] by time N is

UN [α, β] = sup{k : T2k ≤ N}.

LEM 5.1 (Doob’s Upcrossing Lemma) Let X be a superMG. Then

(β − α)EUN [α, β] ≤ E[(XN − α)−].

Proof: Let Yn = (C •X)n. Then Yn is a superMG and satisfies

YN ≥ (β − α)UN [α, β]− (XN − α)−,

since (XN − α)− overestimates the loss during the last interval of play. The result
follows from E[YN ] ≤ 0.

COR 5.2 Let X be a superMG bounded in L1. Then

UN [α, β] ↑ U∞[α, β],

(β − α)EU∞[α, β] ≤ |α|+ sup
n

E|Xn| < +∞,

so that
P[U∞[α, β] =∞] = 0.

Proof: Use (MON).

3 Convergence theorem

THM 5.3 (Martingale convergence theorem) Let X be a superMG bounded in
L1. Then Xn converges and is finite a.s. Moreover, let X∞ = lim supnXn then
X∞ ∈ F∞ and E|X∞| < +∞.

Proof: Let α < β ∈ Q and

Λα,β = {ω : lim inf Xn < α < β < lim supXn}.

Note that

Λ = {ω : Xn does not converge}
= {ω : lim inf Xn < lim supXn}
= ∪α<β∈QΛα,β.

Since
Λα,β ⊆ {U∞[α, β] =∞},

we have P[Λα,β] = 0. By countability, P[Λ] = 0. Use (FATOU) on |Xn| to
conclude.
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COR 5.4 If X is a nonnegative superMG then Xn converges a.s.

Proof: X is bounded in L1 since

E|Xn| = E[Xn] ≤ E[X0], ∀n.

EX 5.5 (Polya’s Urn) An urn contains 1 red ball and 1 green ball. At each time,
we pick one ball and put it back with an extra ball of the same color. Let Rn
(resp. Gn) be the number of red balls (resp. green balls) after the nth draw. Let
Fn = σ(R0, G0, R1, G1, . . . , Rn, Gn). DefineMn to be the fraction of green balls.
Then

E[Mn | Fn−1] =
Rn−1

Gn−1 +Rn−1

Gn−1
Gn−1 +Rn−1 + 1

+
Gn−1

Gn−1 +Rn−1

Gn−1 + 1

Gn−1 +Rn−1 + 1

=
Gn−1

Gn−1 +Rn−1
= Mn−1.

Since Mn ≥ 0 and is a MG, we have Mn →M∞ a.s. See [Dur10, Section 4.3] for
distribution of the limit and a generalization, or decipher,

P[Gn = m+ 1] =

(
n

m

)
m!(n−m)!

(n+ 1)!
=

1

n+ 1
,

so that

P[Mn ≤ x] =
bx(n+ 2)− 1c

n+ 1
→ x.

EX 5.6 (Convergence in L1?) We give an example that shows that the conditions
of the Martingale Convergence Theorem do not guarantee convergence of expec-
tations. Let {Sn} be SRW started at 1 and

T = inf{n > 0 : Sn = 0}.

Then {ST∧n} is a nonnegative MG. It can only converge to 0 . But E[X0] = 1 6= 0.
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