
Lecture 6 : Branching Processes

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Chapter 0], [Dur10, Section 4.3], [AN72, Section I.1 - I.5].

1 Branching processes

DEF 6.1 A branching process is an SP of the form:

• LetX(i, n), i ≥ 1, n ≥ 1, be an array of iid Z+-valued RVs with finite mean
m = E[X(1, 1)] < +∞, and inductively,

Zn =
∑

1≤i≤Zn−1

X(i, n)

To avoid trivialities we assume P[X(1, 1) = i] < 1 for all i ≥ 0.

LEM 6.2 Mn = m−nZn is a nonnegative MG.

Proof: Note that we have∑
j

jP[Zn = j |Zn−1 = i] = mi,

so the claim follows from the eigenvector method. Alternatively, use the following
lemma (proved in Hwk 1).

LEM 6.3 If Y1 = Y2 a.s. on B ∈ F then E[Y1 | F ] = E[Y2 | F ] a.s. on B.

Then, on {Zn−1 = k}

E[Zn | Fn−1] = E[
∑

1≤j≤k
X(j, n) | Fn−1] = mk = mZn−1.

This is true for all k.

COR 6.4 Mn →M∞ < +∞ a.s. and E[M∞] ≤ 1.
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2 Extinction

The martingale convergence theorem in itself tells us little about the limit. Here
we try to give a more detailed picture of the limiting behavior—starting with ex-
tinction.

Let pi = P[X(1, 1) = i] for all i and for s ∈ [0, 1]

f(s) = p0 + p1s+ p2s
2 + · · · =

∑
i≥0

pis
i.

Similarly, fn(s) = E[sZn ]. Ideally, we would like to compute the generating func-
tion of the limit—but this is rarely possible. Instead, we derive some of its proper-
ties. In particular, note that

π ≡ P[Zn = 0 for some n ≥ 0]

= lim
n→+∞

P[Zn = 0]

= lim
n→+∞

fn(0),

using the fact that 0 is an absorbing state and monotonicity.
Moreover, by the Markov property, fn as a natural recursive form:

fn(s) = E[sZn ]

= E[E[sZn | Fn−1]]

= E[f(s)Zn−1 ]

= fn−1(f(s)) = · · · = f (n)(s).

So we need to study iterates of f .
We summarize the properties of f next. To make it easier, we assume p0+p1 <

1.

LEM 6.5 The function f on [0, 1] satisfies:

1. f(0) = p0, f(1) = 1

2. f is indefinitely differentiable on [0, 1)

3. f is strictly convex and increasing

4. lims↑1 f
′(s) = m < +∞
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Proof: 1. is clear by definition. The function f is a power series with radius of
convergence R ≥ 1. This implies 2. In particular,

f ′(s) =
∑
i≥1

ipis
i−1 ≥ 0,

and
f ′′(s) =

∑
i≥2

i(i− 1)pis
i−2 > 0.

because we must have pi > 0 for some i > 1 by assumption. This proves 3. Since
m < +∞, f ′(1) is well defined and f ′ is continuous on [0, 1].

COR 6.6 (Fixed points) We have:

1. If m > 1 then f has a unique fixed point π0 ∈ [0, 1)

2. If m ≤ 1 then f(t) > t for t ∈ [0, 1) (Let π0 = 1 in that case.)

Proof: Since f ′(1) = m > 1, there is δ > 0 s.t. f(1 − δ) < 1 − δ. On the
other hand f(0) ≥ 0 so by continuity of f there must be a fixed point in [0, 1− δ).
Moreover, by strict convexity, if r is a fixed point then f(s) < s for s ∈ (r, 1),
proving uniqueness.

The second part follows by strict convexity and monotonicity.

COR 6.7 (Dynamics) We have:

1. If t ∈ [0, π0), then f (n)(t) ↑ π0

2. If t ∈ (π0, 1) then f (n)(t) ↓ π0

Proof: We only prove 1. The argument for 2. is similar. By monotonicity, for
t ∈ [0, π0), we have t < f(t) < f(π0) = π0. Iterating

t < f (1)(t) < · · · < f (n)(t) < f (n)(π0) = π0.

So f (n)(t) ↑ L ≤ π0. By continuity of f we can take the limit inside of

f (n)(t) = f(f (n−1)(t)),

to get L = f(L). So by definition of π0 we must have L = π0.
We immediately obtain:

THM 6.8 (Extinction) The probability of extinction π is given by the smallest
fixed point of f in [0, 1]:

1. If m ≤ 1 then π = 1.

2. If m > 1 then π < 1.
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