Lecture 6 : Branching Processes

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Chapter 0], [Durl0, Section 4.3], [AN72, Section I.1 - L.5].

1 Branching processes

DEF 6.1 A branching process is an SP of the form:

o Let X(i,n), i > 1,n > 1, be an array of iid Z-valued RVs with finite mean
m = E[X(1,1)] < +oo, and inductively,

Zn= Y X(in)

1§7;§Zn—1
To avoid trivialities we assume P[X (1,1) = i] < 1 foralli > 0.
LEM 6.2 M, = m~"Z, is a nonnegative MG.

Proof: Note that we have

> P Zn = | Zna = i) = mi,
J

so the claim follows from the eigenvector method. Alternatively, use the following
lemma (proved in Hwk 1).

LEM 6.3 IfY; =Yz as. on B € F then E[Y; | F| = E[Y2 | Fl a.s. on B.

Then, on {Z,—1 = k}

E(Zn | Foa] =E[ Y X(j,n) | Fao1] = mk =mZ, 1.
1<5<k

This is true for all &. []

COR 64 M, — My < +oca.s. and E[My] < 1.
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2 Extinction

The martingale convergence theorem in itself tells us little about the limit. Here
we try to give a more detailed picture of the limiting behavior—starting with ex-
tinction.

Let p; = P[X(1,1) = 4] for all ¢ and for s € [0, 1]

f(s)=po+pis+pas®+---=> ps'.
>0

Similarly, f,,(s) = E[s?"]. Ideally, we would like to compute the generating func-
tion of the limit—but this is rarely possible. Instead, we derive some of its proper-
ties. In particular, note that

m = P[Z, =0 forsomen > 0]
= lim P[Z, = 0]
n—-+o0o
= Am A0,

using the fact that 0 is an absorbing state and monotonicity.
Moreover, by the Markov property, f,, as a natural recursive form:

fuls) = E[s™]
= E[E[s™ | Fu1l]
= E[f(s)”]
= fac1(f(s) =+ = f(s).

So we need to study iterates of f.
We summarize the properties of f next. To make it easier, we assume pg+p1 <
1.

LEM 6.5 The function f on [0, 1] satisfies:
1. f(0) =po, f(1) =1
2. f is indefinitely differentiable on [0,1)
3. f is strictly convex and increasing

4. limgpq f'(s) =m < 400
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Proof: 1. is clear by definition. The function f is a power series with radius of
convergence R > 1. This implies 2. In particular,

fl(s) = ipis™ >0,
i1

and

() =3 ili — Dpis > 0,

i>2
because we must have p; > 0 for some ¢ > 1 by assumption. This proves 3. Since
m < +oo, f'(1) is well defined and f’ is continuous on [0, 1]. [

COR 6.6 (Fixed points) We have:
1. If m > 1 then f has a unique fixed point mo € [0,1)
2. If m < 1then f(t) >t fort € [0,1) (Let 7y = 1 in that case.)

Proof: Since f'(1) = m > 1, thereis & > Os.t. f(1 —3J) < 1 — 4. On the
other hand f(0) > 0 so by continuity of f there must be a fixed pointin [0, 1 — J).
Moreover, by strict convexity, if 7 is a fixed point then f(s) < s for s € (r, 1),
proving uniqueness.

The second part follows by strict convexity and monotonicity. |

COR 6.7 (Dynamics) We have:
1. Ift e [0,7T0), then f(n)<t) 1 o
2. Ift € (mo, 1) then f™(t) | mo

Proof: We only prove 1. The argument for 2. is similar. By monotonicity, for
t € [0,m), we have t < f(t) < f(mg) = mp. Iterating

t< fO@) < < f) < f" (mo) = mo.
So f("(t) 1 L < mp. By continuity of f we can take the limit inside of
Fo @) = (0 w),

to get L = f(L). So by definition of 7y we must have L = . |
We immediately obtain:

THM 6.8 (Extinction) The probability of extinction 7 is given by the smallest
fixed point of f in [0,1]:

1. Ifm <1thenm =1.

2. Ifm>1thenm < 1L
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