Lecture 9 : Martingales in L^2 (continued)

MATH275B - Winter 2012 *Lecturer: Sebastien Roch*

References: [Wil91, Chapter 12], [Dur10, Section 4.4].

1 Review: Random series

Recall:

THM 9.1 (Three-Series Thm) Let $\{X_n\}$ be independent. For $K > 0$, let $Y_n =$ $X_n \mathbb{1}\{|X_n| \leq K\}$. Then $\sum_n X_n$ converges a.s. if and only if:

- *1.* $\sum_{n} \mathbb{P}[|X_n| > K] < +\infty$
- 2. $\sum_{n} \mathbb{E}[Y_n]$ *converges*
- 3. \sum_{n} Var $[Y_n] < +\infty$

We will see a MG generalization of this result.

2 Angle-brackets process

THM 9.2 (Doob decomposition) Let X be an adapted process in L^1 . Then

• X *has an a.s. unique decomposition*

$$
X = X_0 + M + A, \qquad (*)
$$

where M is a MG and A is predictable with $M_0 = A_0 = 0$ *.*

• *X* is a subMG if and only if $A_n \uparrow a.s$.

Proof: Suppose (∗) holds. Observe

 $\mathbb{E}[X_n - X_{n-1} | \mathcal{F}_{n-1}] = \mathbb{E}[M_n - M_{n-1} | \mathcal{F}_{n-1}] + \mathbb{E}[A_n - A_{n-1} | \mathcal{F}_{n-1}] = A_n - A_{n-1},$ so that

$$
A_n = \sum_{k \leq n} \mathbb{E}[X_k - X_{k-1} | \mathcal{F}_{k-1}].
$$

This proves uniqueness—that is, if there is a decomposition such that M is a MG then A has to be of the previous form. Using this equation as definition gives first claim—by the same equation, M will be a MG. Second claim is now obvious. \blacksquare

LEM 9.3 *If M is a MG and* ϕ *is convex with* $\mathbb{E}[\|\phi(M_n)\|] < +\infty$ *, then* $\phi(M_n)$ *is a subMG.*

Proof: Using (cJENSEN)

$$
\mathbb{E}[\phi(M_n) | \mathcal{F}_{n-1}] \ge \phi(\mathbb{E}[M_n | \mathcal{F}_{n-1}]) = \phi(M_{n-1}).
$$

DEF 9.4 (Angle-brackets process) Let M be a MG in \mathcal{L}^2 with $M_0 = 0$. Then M² *is a subMG with decomposition*

$$
M^2 \equiv N + \langle M \rangle,
$$

where $\langle M \rangle_n \uparrow a.s.$ Moreover M is bounded in L^2 if and only if $\mathbb{E}[\langle M \rangle_{\infty}] < \infty$. *Finally note*

$$
\langle M \rangle_n = \sum_k \mathbb{E}[M_k^2 - M_{k-1}^2 | \mathcal{F}_{k-1}] = \sum_k \mathbb{E}[(M_k - M_{k-1})^2 | \mathcal{F}_{k-1}].
$$

We finally come to our main theorem.

THM 9.5 *Let* M *be a MG in* L 2 *. Then*

- *1.* $\lim_{n} M_n(\omega)$ *exists for a.e.* ω *s.t.* $\langle M \rangle_{\infty} < \infty$ *.*
- *2. If further* $|M_n M_{n-1}| \leq K$ *a.s.* $\forall n$ *then* $\langle M \rangle_{\infty}(\omega) < +\infty$ *for a.e.* ω *s.t.* $\lim_n M_n(\omega)$ *exists.*

Proof: Proof of 1. Observe that

$$
\{\langle M\rangle_{\infty}<\infty\}=\cup_k\{S(k)=+\infty\},\
$$

where

$$
S(k) = \inf\{n : \langle M \rangle_{n+1} > k\},\
$$

defines a stopping time. It suffices to prove:

LEM 9.6 $\langle M^{S(k)}\rangle = \langle M\rangle^{S(k)}.$

 \blacksquare

Lecture 9: Martingales in L^2 (continued) 3

Indeed, $\mathbb{E}[\langle M \rangle^{S(k)}] \le k < +\infty$, hence $\mathbb{E}[\langle M^{S(k)} \rangle] < +\infty$ and the MG $M^{S(k)}$ is bounded in L^2 :

$$
\lim_n M_n^{S(k)}
$$
 exists a.s.

Since $S(k) = +\infty$ for some k we have proved the first claim. It remains to prove the lemma. Note that

$$
(M^2 - \langle M \rangle)^{S(k)} = (M^{S(k)})^2 - \langle M \rangle^{S(k)},
$$

is a MG. By the uniqueness of Doob's decomposition, it suffices to show that $\langle M \rangle^{S(k)}$ is predictable. Let $B \in \mathcal{B}$. Then

$$
\{\langle M \rangle_n^{S(k)} \in B\} = E_1 \cup E_2,
$$

where

$$
E_1 = \bigcup_{1 \le r \le n-1} \{ S(k) = r, \ \langle M \rangle_r \in B \} \in \mathcal{F}_{n-1},
$$

and

$$
E_2 = \{ S(k) \le n - 1 \}^c \cap \{ \langle M \rangle_n \in B \} \in \mathcal{F}_{n-1}.
$$

That concludes the proof of the first claim.

Proof of 2. (Sketch.) Proof is similar. Enough to prove that $\sup_n |M_n(\omega)|$ < $+\infty$ implies $\langle M \rangle_{\infty} < +\infty$ a.s. Observe

$$
\{\sup_n |M_n(\omega)| < +\infty\} = \cup_c \{T(c) = +\infty\},\
$$

where

$$
T(c) = \inf\{n : |M_n| > c\},\
$$

defines a stopping time. By the above lemma,

$$
\mathbb{E}[(M_n^{T(c)})^2 - \langle M \rangle_n^{T(c)}] = 0,
$$

so that

$$
\mathbb{E}[\langle M \rangle_n^{T(c)}] \le (c+K)^2.
$$

Since $T(c) = +\infty$ for some c, this proves the second claim.

 \blacksquare

Lecture 9: Martingales in L^2 (continued) 4

3 Applications

THM 9.7 (A strong law for MGs in L^2) Let M be a MG in \mathcal{L}^2 with $M_0 = 0$. *Then*

$$
\frac{M_n}{\langle M \rangle_n} \to 0, \quad a.s. \text{ on } \{\langle M \rangle_\infty = +\infty\}.
$$

Proof: Note that $(1 + \langle M \rangle)^{-1}$ is bounded and predictable so that

$$
W_n = ((1 + \langle M \rangle)^{-1} \bullet M)_n = \sum_{k=1}^n \frac{M_k - M_{k-1}}{1 + \langle M \rangle_k},
$$

is a MG. Note that

$$
\mathbb{E}[(W_n - W_{n-1})^2 | \mathcal{F}_{n-1}]
$$

= $(1 + \langle M \rangle_n)^{-2} \mathbb{E}[(M_n - M_{n-1})^2 | \mathcal{F}_{n-1}]$
= $(1 + \langle M \rangle_n)^{-2} (\langle M \rangle_n - \langle M \rangle_{n-1})$
 $\leq (1 + \langle M \rangle_{n-1})^{-1} (1 + \langle M \rangle_n)^{-1} ((1 + \langle M \rangle_n) - (1 + \langle M \rangle_{n-1}))$
= $(1 + \langle M \rangle_{n-1})^{-1} - (1 + \langle M \rangle_n)^{-1}.$

In particular, $\langle W\rangle_\infty \leq 1 < +\infty$ so that W_n converges a.s.

LEM 9.8 (Kronecker's Lemma) *If* $b_n \uparrow +\infty$ *then*

$$
\sum_{n} \frac{x_n}{b_n}
$$
 converges $\implies \frac{\sum_{n} x_n}{b_n} \to 0.$

Then on $\{M\}_{\infty} = +\infty\}$, we have $M_n/(1 + \langle M \rangle_n) \to 0$ and the result follows.

THM 9.9 (Levy's extension of Borel-Cantelli) Suppose $\mathbb{1}_{E_k}$ is adapted. Define

$$
Z_n = \sum_{k=1}^n \mathbb{1}_{E_k},
$$

and

$$
Y_n = \sum_{k=1}^n \mathbb{P}[E_k | \mathcal{F}_{k-1}].
$$

Then

$$
1. \ Y_{\infty} < \infty \implies Z_{\infty} < \infty
$$

2. $Y_{\infty} = +\infty \implies Z_n/Y_n \to 1$

Note that the previous theorem implies the classical BC lemmas. For 1, note that $\mathbb{E}[Y_\infty] = \sum_k \mathbb{P}[E_k]$. For 2, note that by independence $\mathbb{P}[E_k | \mathcal{F}_{k-1}] = \mathbb{P}[E_k]$. **Proof:** Z is a subMG, Y is predictable and $M = Z - Y$ is a MG. The proof relies on computing $\langle M \rangle$. Note

$$
\langle M \rangle_n = \sum_{k=1}^n \mathbb{E}[(M_k - M_{k-1})^2 | \mathcal{F}_{k-1}]
$$

\n
$$
= \sum_{k=1}^n \mathbb{E}[(\mathbb{1}_{E_k} - \mathbb{P}[E_k | \mathcal{F}_{k-1}])^2 | \mathcal{F}_{k-1}]
$$

\n
$$
= \sum_{k=1}^n \mathbb{E}[\mathbb{1}_{E_k} - \mathbb{P}[E_k | \mathcal{F}_{k-1}]^2 | \mathcal{F}_{k-1}]
$$

\n
$$
= \sum_{k=1}^n [\mathbb{P}[E_k | \mathcal{F}_{k-1}] - \mathbb{P}[E_k | \mathcal{F}_{k-1}]^2]
$$

\n
$$
\leq Y_n.
$$

We are ready to prove the statements.

- 1. $|Y_\infty < +\infty$. Then $\langle M \rangle_\infty < +\infty$ and M_n converges. Hence, $Z = M + Y$ also converges.
- 2. $\boxed{Y_{\infty} = +\infty}$. Assume first that $\langle M \rangle_{\infty} < +\infty$. Then M_n converges and

$$
\frac{Z_n}{Y_n} = \frac{M_n + Y_n}{Y_n} \to 1.
$$

On the other hand, if $\langle M \rangle_{\infty} = +\infty$ the strong law for L^2 MGs gives $M_n/\langle M \rangle_n \to 0$ so that $M_n/Y_n \to 0$ and $Z_n/Y_n \to 1$.

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
- [Wil91] David Williams. *Probability with martingales*. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.

 \blacksquare