
Lecture 9 : Martingales in L2 (continued)

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Chapter 12], [Dur10, Section 4.4].

1 Review: Random series

Recall:

THM 9.1 (Three-Series Thm) Let {Xn} be independent. For K > 0, let Yn =
Xn1{|Xn| ≤ K}. Then

∑
nXn converges a.s. if and only if:

1.
∑

n P[|Xn| > K] < +∞

2.
∑

n E[Yn] converges

3.
∑

nVar[Yn] < +∞

We will see a MG generalization of this result.

2 Angle-brackets process

THM 9.2 (Doob decomposition) Let X be an adapted process in L1. Then

• X has an a.s. unique decomposition

X = X0 +M +A, (∗)

where M is a MG and A is predictable with M0 = A0 = 0.

• X is a subMG if and only if An ↑ a.s.

Proof: Suppose (∗) holds. Observe

E[Xn−Xn−1 | Fn−1] = E[Mn−Mn−1 | Fn−1]+E[An−An−1 | Fn−1] = An−An−1,

so that
An =

∑
k≤n

E[Xk −Xk−1 | Fk−1].
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This proves uniqueness—that is, if there is a decomposition such that M is a MG
then A has to be of the previous form. Using this equation as definition gives first
claim—by the same equation, M will be a MG. Second claim is now obvious.

LEM 9.3 If M is a MG and φ is convex with E[|φ(Mn)|] < +∞, then φ(Mn) is
a subMG.

Proof: Using (cJENSEN)

E[φ(Mn) | Fn−1] ≥ φ(E[Mn | Fn−1]) = φ(Mn−1).

DEF 9.4 (Angle-brackets process) Let M be a MG in L2 with M0 = 0. Then
M2 is a subMG with decomposition

M2 ≡ N + 〈M〉,

where 〈M〉n ↑ a.s. Moreover M is bounded in L2 if and only if E[〈M〉∞] < ∞.
Finally note

〈M〉n =
∑
k

E[M2
k −M2

k−1 | Fk−1] =
∑
k

E[(Mk −Mk−1)
2 | Fk−1].

We finally come to our main theorem.

THM 9.5 Let M be a MG in L2. Then

1. limnMn(ω) exists for a.e. ω s.t. 〈M〉∞ <∞.

2. If further |Mn −Mn−1| ≤ K a.s. ∀n then 〈M〉∞(ω) < +∞ for a.e. ω s.t.
limnMn(ω) exists.

Proof: Proof of 1. Observe that

{〈M〉∞ <∞} = ∪k{S(k) = +∞},

where
S(k) = inf{n : 〈M〉n+1 > k},

defines a stopping time. It suffices to prove:

LEM 9.6 〈MS(k)〉 = 〈M〉S(k).
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Indeed, E[〈M〉S(k)] ≤ k < +∞, hence E[〈MS(k)〉] < +∞ and the MG MS(k) is
bounded in L2:

lim
n
MS(k)

n exists a.s.

Since S(k) = +∞ for some k we have proved the first claim. It remains to prove
the lemma. Note that

(M2 − 〈M〉)S(k) = (MS(k))2 − 〈M〉S(k),

is a MG. By the uniqueness of Doob’s decomposition, it suffices to show that
〈M〉S(k) is predictable. Let B ∈ B. Then

{〈M〉S(k)n ∈ B} = E1 ∪ E2,

where
E1 = ∪1≤r≤n−1{S(k) = r, 〈M〉r ∈ B} ∈ Fn−1,

and
E2 = {S(k) ≤ n− 1}c ∩ {〈M〉n ∈ B} ∈ Fn−1.

That concludes the proof of the first claim.
Proof of 2. (Sketch.) Proof is similar. Enough to prove that supn |Mn(ω)| <

+∞ implies 〈M〉∞ < +∞ a.s. Observe

{sup
n
|Mn(ω)| < +∞} = ∪c{T (c) = +∞},

where
T (c) = inf{n : |Mn| > c},

defines a stopping time. By the above lemma,

E[(MT (c)
n )2 − 〈M〉T (c)

n ] = 0,

so that
E[〈M〉T (c)

n ] ≤ (c+K)2.

Since T (c) = +∞ for some c , this proves the second claim.
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3 Applications

THM 9.7 (A strong law for MGs in L2) Let M be a MG in L2 with M0 = 0.
Then

Mn

〈M〉n
→ 0, a.s. on {〈M〉∞ = +∞}.

Proof: Note that (1 + 〈M〉)−1 is bounded and predictable so that

Wn = ((1 + 〈M〉)−1 •M)n =

n∑
k=1

Mk −Mk−1
1 + 〈M〉k

,

is a MG. Note that

E[(Wn −Wn−1)
2 | Fn−1]

= (1 + 〈M〉n)−2E[(Mn −Mn−1)
2 | Fn−1]

= (1 + 〈M〉n)−2(〈M〉n − 〈M〉n−1)
≤ (1 + 〈M〉n−1)−1(1 + 〈M〉n)−1((1 + 〈M〉n)− (1 + 〈M〉n−1))
= (1 + 〈M〉n−1)−1 − (1 + 〈M〉n)−1.

In particular, 〈W 〉∞ ≤ 1 < +∞ so that Wn converges a.s.

LEM 9.8 (Kronecker’s Lemma) If bn ↑ +∞ then∑
n

xn
bn

converges =⇒
∑

n xn
bn

→ 0.

Then on {〈M〉∞ = +∞}, we have Mn/(1+ 〈M〉n)→ 0 and the result follows.

THM 9.9 (Levy’s extension of Borel-Cantelli) Suppose 1Ek
is adapted. Define

Zn =
n∑

k=1

1Ek
,

and

Yn =

n∑
k=1

P[Ek | Fk−1].

Then

1. Y∞ <∞ =⇒ Z∞ <∞

2. Y∞ = +∞ =⇒ Zn/Yn → 1
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Note that the previous theorem implies the classical BC lemmas. For 1, note that
E[Y∞] =

∑
k P[Ek]. For 2, note that by independence P[Ek | Fk−1] = P[Ek].

Proof: Z is a subMG, Y is predictable and M = Z−Y is a MG. The proof relies
on computing 〈M〉. Note

〈M〉n =
n∑

k=1

E[(Mk −Mk−1)
2 | Fk−1]

=
n∑

k=1

E[(1Ek
− P[Ek | Fk−1])

2 | Fk−1]

=

n∑
k=1

E[1Ek
− P[Ek | Fk−1]

2 | Fk−1]

=

n∑
k=1

[P[Ek | Fk−1]− P[Ek | Fk−1]
2]

≤ Yn.

We are ready to prove the statements.

1. Y∞ < +∞. Then 〈M〉∞ < +∞ and Mn converges. Hence, Z = M + Y
also converges.

2. Y∞ = +∞. Assume first that 〈M〉∞ < +∞. Then Mn converges and

Zn

Yn
=
Mn + Yn

Yn
→ 1.

On the other hand, if 〈M〉∞ = +∞ the strong law for L2 MGs gives
Mn/〈M〉n → 0 so that Mn/Yn → 0 and Zn/Yn → 1.
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