Lecture 14 : Eigenvector-based estimation

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [MPO03], [Roc10].

Previous class

The majority at level h is defined as

1
Iy = Shgh Z Oy
x€[2h]

THM 14.1 (Phase transition for majority) We have

Ef[Zy] = +1, E, [Z) = —1.

and /2
—Le . 20° > 1
Var[Z,] — { 17097 -
+00, 20% < 1.

1 Extending majority to GTR models and general trees

The following natural generalization of the CFN model is commonly used in evo-
lutionary biology.

DEF 14.2 (GTR model) Fix C with |C| > 2. Let0 < 7w € Ac and Q a |C| x |C|

rate matrix reversible w.r.t. 7, that is:

e (Infinitesimal Generator) () has nonnegative off-diagonal entries and each
row sums to Q.

e (Reversibility) Foralli,5 € C, WiQij = Wijz‘-

Let ¢ be a tree metric on X = [n] with corresponding tree metric representation
(7 ,{we}eecr). Then a GTR model on T (rooted at an arbitrary node p) with rate
matrix Q) is an MCT (T ,P, m,) such that:
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e (Stationarity) 7, = .
e (Transition matrix) P = { P, }.cp is of the form

P, = ¢ weq,

Recall that for a matrix A the matrix exponential is defined as

A=y A
7!

=0

-1 1

we recover the CFN model above.
Because the matrix (7111 / 2Qz~j7rj_1/ Z)ij is symmetric by reversibility, it is easily
seen (check!) that () is diagonalizable. Further, by the infinitesimal generator
assumption, all eigenvalues are nonpositive with the largest being 0. We normalize
Q as follows: let v =1 = (1,...,1),..., (€D be orthonormal eigenvectors of

@ corresponding to eigenvalues 0 = A\; > Ap = —1 > --- )\|C‘ where we assume

further that A
Y ma(wP)? =1,
acC

For instance with

foralli =1,...,|C|. The second eigenvector v will play a special role and we
denote it simply by v.
Given a realization {Z, } ,ey of the GTR model, we let

Oy = Vz,-

The appropriate generalization of majority for GTR models is then as follows: let
{te teer be a unit flow from p to ¢(X) and let {u,}.ex be the flow reaching

¢(X), then we let
_ HxOx
Zu= Z e—0(p.d(z))

zeX

The following result is a generalization of Theorem 14.1 and has a similar proof.
See [MP03] and [Roc10] for details.

THM 14.3 It holds that
E[Zy|op] = 0,
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and
Var[Z,) =1+ Y (1—e 2we)e®ew)y2 (1)
e=(u,v)eE

where the sum above assumes that v is furthest away from the root.

Note that minimizing the variance of Z,, over y is a convex quadratic optimization
problem.

2 Kesten-Stigum Phase

In the Kesten-Stigum phase, a good choice of flow turns out to be the following.

THM 14.4 (Kesten-Stigum Phase) Assume that T is a rooted binary phyloge-
netic tree with w, < g < g« = In\/2 for all e. Let j1 be the flow that splits itself
equally at each branching. Then,

Var[Z,] <V < +o0,
where V is an absolute constant (independent of T ).

Proof: Assume the largest graphical distance between the root and the leaf set is
H. Then summing the edges level by level in (1)

H
Var[Z,] < 1+ ) 2M1—e )92
h=1

H
< 1+ Z€2ghe—(ln2)h
h=1
H
< 1Y oo
h=1
1
< 1+ < +o00.

1— 672(9* —-9)

3 Eigenvector-based metrics

Suppose now we have k i.i.d. samples {Efx}f:l from a GTR model. As before,
let {o’ }le be the corresponding eigenvector mapped states. For convenience,
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assume that the underlying metric is an ultrametric (although this is not needed
here). Notice that in that case 1 — e—9(@b) ig also an ultrametric since

1—e @b < max{1—e70@9) 190N — §(a,b) < max{d(a,c),d(b,c)}.

In fact, we will work with the similarity map o(a,b) = e~9(®b).,
We consider the following similarity estimator

k
A 1 o
P(a.0) = 1> oio},
=1
LEM 14.5 (Unbiasedness) It holds that

E[(a,b)] = ¢(a, b).

Proof: Letting

note that

and therefore

E[p(a,b)] = vt [ﬂ'a(e_‘s(“’b)Q)a,ﬁ v = e 0(ab),L [TaVal, = e 0(ab),

Further reading

Work on Steel’s conjecture was initiated in the seminal paper of Mossel [Mos04].
See also [DMRO6].
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