
Lecture 14 : Eigenvector-based estimation

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [MP03], [Roc10].

Previous class

The majority at level h is defined as

Zh =
1

2hθh
∑
x∈[2h]

σx.

THM 14.1 (Phase transition for majority) We have

E+
h [Zh] = +1, E−h [Zh] = −1.

and

Var[Zh]→

{
1/2

1−(2θ2)−1 , 2θ2 > 1

+∞, 2θ2 ≤ 1.

1 Extending majority to GTR models and general trees

The following natural generalization of the CFN model is commonly used in evo-
lutionary biology.

DEF 14.2 (GTR model) Fix C with |C| ≥ 2. Let 0 < π ∈ ∆C and Q a |C| × |C|
rate matrix reversible w.r.t. π, that is:

• (Infinitesimal Generator) Q has nonnegative off-diagonal entries and each
row sums to 0.

• (Reversibility) For all i, j ∈ C, πiQij = πjQji.

Let δ be a tree metric on X = [n] with corresponding tree metric representation
(T , {we}e∈E). Then a GTR model on T (rooted at an arbitrary node ρ) with rate
matrix Q is an MCT (T ,P, πρ) such that:
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• (Stationarity) πρ ≡ π.

• (Transition matrix) P = {Pe}e∈E is of the form

Pe = e−weQ.

Recall that for a matrix A the matrix exponential is defined as

eA =
+∞∑
i=0

Ai

i!
.

For instance with

Q =
(
−1 1
1 −1

)
,

we recover the CFN model above.
Because the matrix (π1/2

i Qijπ
−1/2
j )ij is symmetric by reversibility, it is easily

seen (check!) that Q is diagonalizable. Further, by the infinitesimal generator
assumption, all eigenvalues are nonpositive with the largest being 0. We normalize
Q as follows: let ν(1) = 1 = (1, . . . , 1), . . . , ν(|C|) be orthonormal eigenvectors of
Q corresponding to eigenvalues 0 = λ1 > λ2 = −1 ≥ · · ·λ|C| where we assume
further that ∑

α∈C
πα(ν(i)

α )2 = 1,

for all i = 1, . . . , |C|. The second eigenvector ν(2) will play a special role and we
denote it simply by ν.

Given a realization {Ξv}v∈V of the GTR model, we let

σv = νΞv .

The appropriate generalization of majority for GTR models is then as follows: let
{µe}e∈E be a unit flow from ρ to φ(X) and let {µx}x∈X be the flow reaching
φ(X), then we let

Zµ =
∑
x∈X

µxσx

e−δ(ρ,φ(x))
.

The following result is a generalization of Theorem 14.1 and has a similar proof.
See [MP03] and [Roc10] for details.

THM 14.3 It holds that
E[Zµ |σρ] = σρ,
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and
Var[Zµ] = 1 +

∑
e=(u,v)∈E

(1− e−2we)e2δ(ρ,v)µ2
e, (1)

where the sum above assumes that v is furthest away from the root.

Note that minimizing the variance of Zµ over µ is a convex quadratic optimization
problem.

2 Kesten-Stigum Phase

In the Kesten-Stigum phase, a good choice of flow turns out to be the following.

THM 14.4 (Kesten-Stigum Phase) Assume that T is a rooted binary phyloge-
netic tree with we ≤ g < g∗ ≡ ln

√
2 for all e. Let µ be the flow that splits itself

equally at each branching. Then,

Var[Zµ] ≤ V < +∞,

where V is an absolute constant (independent of T ).

Proof: Assume the largest graphical distance between the root and the leaf set is
H . Then summing the edges level by level in (1)

Var[Zµ] ≤ 1 +
H∑
h=1

2h(1− e−2g)e2hg2−2h

≤ 1 +
H∑
h=1

e2ghe−(ln 2)h

≤ 1 +
H∑
h=1

e−2(g∗−g)h

≤ 1 +
1

1− e−2(g∗−g)
< +∞.

3 Eigenvector-based metrics

Suppose now we have k i.i.d. samples {ΞiX}ki=1 from a GTR model. As before,
let {σiX}ki=1 be the corresponding eigenvector mapped states. For convenience,
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assume that the underlying metric is an ultrametric (although this is not needed
here). Notice that in that case 1− e−δ(a,b) is also an ultrametric since

1−e−δ(a,b) ≤ max{1−e−δ(a,c), 1−e−δ(b,c)} ⇐⇒ δ(a, b) ≤ max{δ(a, c), δ(b, c)}.

In fact, we will work with the similarity map ϕ(a, b) = e−δ(a,b).
We consider the following similarity estimator

ϕ̂(a, b) =
1
k

k∑
i=1

σiaσ
i
b.

LEM 14.5 (Unbiasedness) It holds that

E[ϕ̂(a, b)] = ϕ(a, b).

Proof: Letting

F̂ abα,β =
1
k

k∑
i=1

1{Ξia = α,Ξib = β},

note that
ϕ̂(a, b) = ν⊥F̂ abν,

and therefore

E[ϕ̂(a, b)] = ν⊥
[
πα(e−δ(a,b)Q)α,β

]
α,β

ν = e−δ(a,b)ν⊥ [πανα]α = e−δ(a,b).

Further reading

Work on Steel’s conjecture was initiated in the seminal paper of Mossel [Mos04].
See also [DMR06].
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