
Lecture 18 : Ewens’ sampling formula

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [Dur08, Chapter 1.3].

Previous class

In the previous lecture, we introduced Kingman’s coalescent as a limit of the
Wright-Fisher model for the lineages—backwards in time—of a small sample in a
large population. One of the main advantages of the coalescent is its robustness.
The coalescent also emphasizes that through their joint genealogical process the
samples are correlated. That correlation structure plays an important role in the
design of good statistical estimators as we will see in this lecture.

Recall that the coalescent and the Wright-Fisher models in themselves are not
particularly interesting because all genetic variation is lost through fixation—a phe-
nomenon known as genetic drift. We now introduce mutations.

1 Infinite-alleles model

We begin with a simple model of mutation known as the infinite-alleles model.
Imagine that we are looking at a gene which has several variants called alleles. We
ignore the details of the differences between the various alleles (that is, we do not
know their sequence) and we assume that each time a mutation occurs it creates
a new allele. Let θ/2 be the rate at which mutations occur in each individual (in
the rescaled time of the coalescent). The infinite-allele model can be described
formally in two equivalent, but equally useful, ways.

DEF 18.1 (Infinite-alleles model: First definition) First generate a coalescent on
n samples. Conditioned on the tree obtained, generate an independent Poisson
point process on the tree with rate θ/2. Each sample inherits the last allele created
on the path from the root (or the state at the root if no mutation occured). (Recall
that such a Poisson point process can be obtained by picking an infinite sequence of
independent uniform random points of the tree and keeping only the first Z where
Z is Poisson with mean Ttotθ/2 with Ttot the total length of the tree.)
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Recall the following facts about exponential random variables.

LEM 18.2 (Minimum of exponentials) Let X1, . . . , Xk be k independent expo-
nentials with parameters λ1, . . . , λk. Let

Z = min{X1, . . . , Xk}.

Then

1. Z is exponential with parameter λ1 + · · ·+ λk.

2. P[Z = Xi] = λi
λ1+···+λk

.

Proof: Note that

P[Z > z] =
k∏
i=1

P[Xi > z] = exp

(
−z

k∑
i=1

λi

)
.

Similarly

P[Z = Xi] = E[P[Z = Xi |Xi]]

= E

exp

−Xi

∑
j 6=i

λj


=
∫ ∞

0
dxλie−λix exp

−x∑
j 6=i

λj

 .

LEM 18.3 (Memoryless property) If Z is exponential and s < t, then

P[Z > t |Z > s] = P[Z > t− s].

Proof: Immediate from definition of conditional probability.
This leads to an equivalent definition of the infinite-alleles model where coa-

lescence and mutations are generated simultaneously.

DEF 18.4 (Infinite-alleles model: Second definition) For a partition Π on n sam-
ples, we let |Π| be the number of sets in Π. Consider the following algorithm with
n and θ as input:

• Set Π = {{1}, . . . , {n}}.
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• Repeat until |Π| = 1:

– Set k := |Π|.
– After an exponential time with parameter

(
k
2

)
+ k θ2 (going backwards

in time):

∗ With probability

k θ2(
k
2

)
+ k θ2

=
θ

θ + k − 1
,

generate a mutation in a uniformly random lineage.
∗ With probability (

k
2

)(
k
2

)
+ k θ2

=
k − 1

θ + k − 1
,

merge two uniformly random lineages.

2 Homozygosity

The infinite-alleles model has one parameter, the mutation rate θ. We discuss sta-
tistical estimators. A quantity that is naturally related to the mutation rate is the
homozygosity, that is, the probability that two uniformly chosen samples have the
same allele

F̂n =
1(
n
2

) ∑
{i,j}

δi,j ,

where the sum is over distinct pairs in {1, . . . , n} and δi,j is 1 if samples i and j
have the same allele and 0 otherwise.

To illustrate the two equivalent definition of the model, we compute the expec-
tation of F̂n under both:

THM 18.5 (Homozygosity) We have

E
[
F̂n

]
=

1
1 + θ

.

Proof:(Proof 1) By linearity of expectations, it is enough to consider a 2-coalescent.
The probability that there are no mutations on the path between 1 and 2 is

E[δ1,2] = P[δ1,2 = 1] = E[P[δ1,2 = 1 |Ttot]] = E[e−2Ttot(θ/2)] =
∫ ∞

0
dte−te−tθ.
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Proof:(Proof 2) The probability that a coalescence occurs before the first mutation
is

2− 1
θ + 2− 1

=
1

1 + θ
.

However, because of the correlation in the samples, the variance of F̂n does
not converge to 0.

THM 18.6 As n→∞, we have

Var
[
F̂n

]
→ 2θ

(1 + θ)2(2 + θ)(3 + θ)
.

Proof: We begin by computing the second moment. Note that

E
[
F̂ 2
n

]
= E

(n2
)−2 ∑

{i1,j1}
{i2,j2}

δi1,j1δi2,j2

 .
Because of the O(n−4) in front, in the limit only the terms with |{i1, j1, i2, j2}| =
4 contribute to the second moment. Note that there are

(
n
2

)(
n−2

2

)
such terms so that

E
[
F̂ 2
n

]
→ E[δ1,2δ3,4].

Ewens’ sampling formula derived below will give the result.

3 Ewens’ sampling formula

For i = 1, . . . , n, let ai be the number of alleles that appear i times in the sample
and let q(a) be the distribution of a = (a1, . . . , an). Ewens showed that q satisfies
the following recursion:

THM 18.7 Letting ei be the unit vector in direction i, we have

q(a) =
θ

θ + n− 1

a1

n
q(a) +

n∑
j=2

j(aj + 1)
n

q(a− e1 − ej−1 + ej)


+

n− 1
θ + n− 1

 n∑
j=1

j(cj + 1)
n

q(a + ej − ej−1)

 .
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Proof: The proof is left to the reader. Hint: condition on the first event in the
second definition of the infinite-alleles model.

By working out basic cases, Ewens conjectured that:

THM 18.8 (Ewens’ sampling formula) Letting ‖a‖ =
∑n

i=1 iai, in a sample of
size n we have

q(a) = 1{‖a‖ = n} n!
θ(n)

n∏
i=1

(
θ

i

)ai 1
ai!
,

where θ(n) = θ(θ + 1) · · · (θ + n− 1).

Note that for n = 2,

q((2, 0)) =
2!

θ(θ + 1)

(
θ

1

)2 1
2!

=
θ

1 + θ
,

and

q((0, 1)) =
2!

θ(θ + 1)

(
θ

2

)1 1
1!

=
1

1 + θ
,

confirming our previous calculations on homozygosity.
We will give Kingman’s proof of Ewens’ sampling formula in the next lecture.

Further reading

The material in this section was taken from Section 1.3 of the excellent mono-
graph [Dur08].
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