Lecture 22 : Recombination on 2 loci

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [Dur08, Chapter 3.1].

1 Recombination

The coalescence processes at two loci are correlated through a process called re-
combination which—Ilooking at time going backwards—produces branchings. For-
mally the state of the process is described by a vector x = (i, j, k) (where i (re-
spectively j, k) is the number of lineages that “sit on the coalescent tree of locus
a (respectively locus b and both loci)”) and the rates (going backwards are) to the
various states are as follows

((i+1,7+1,k—1) atrater; = pk/2
(t—1,7—1,k+1) atratery =1ij

(i,5,k) = ¢ (i —1,7,k) atrate 3 = ik +i(i — 1)/2 (1)
(4,5 —1,k) atratery = jk+j(j —1)/2
(4,5,k —1) atrate 5 = k(k — 1)/2.

See [Dur08] for an illustration of the process. Letting n, = ¢ + k, np = j + k, and
{ =i+ j + k, the total rate under z is

0E—1)+k
5, = ( 12)+ P

2 A Recursion for the Covariance

To quantify the correlation between loci a and b, we consider the covariance be-
tween the total tree lengths 7, and 7.

THM 22.1 (Tree-Length Covariance: Recursion) Let x = (i, j, k) be the initial
state. Let F'(x) be the covariance of the tree lengths T, and T, started at x. If X is
the state after the first jump. Then

2k(k —1)
Br(ng —1)(np — 1)

F(z) = Bo[F(X)] +
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Proof: By the conditional covariance formula,
Cov|ra, 1] = E[Cov[r,, 7 | X]] + Cov[E[r, | X], E[r | X]],
where the initial state x is implied. Let J be the time of the first jump, then
To = Nad + 70,

where 7/, is the total length of the tree after .J, and similarly for b. Since J is
independent of 7, 7¢ and X
NNy

B2

Let N, and NV be the number of a and b lineages after the first jump. We need to
compute E[7, | X] — E[r,]. Recall that

E[Cov(7a, Ty | X]] = nanpVar[J] + E[Cov[r,, 7 | X]] =

+ E.[F(X))].

m—1 1
E[7a] = h(na) =2 Z >
j=1

<

so that
Efr, |X] — Efra] = (g“ T h(%)) ~ hina). @

€T

Note that, considering all transitions in (1), n, cannot increase and it decreases at
rate r3 + 75. Hence, by a similar reasoning for b, we get

E[Cov|ra, 7| X]] = E Kg +h(N,) — h(na)> <Zb +h(Ny) — h(nb)>]

_nanb+mr4—l—r5( 2 )+7%T3+7”5( 2 >
6;% ﬁx ﬁx ny —1 ﬁx ﬁz ng — 1
Ts 2 2
+ 2 .
Be \ng —1np —1

Further, taking expectations in (2),

02@4_7“3—1—7“5 <_ 2 >’
Bz Bz ng — 1

and similarly for b, so that

_ NaMyp n 4rs
B2 Be(ng —1)(ny—1)

This proves the claim. ]

E[COV[Taa Ty | XH =
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3 Solving the Recursion

The recursion in Theorem 22.1 results in linear systems that can be solved induc-
tively in n, and n;. We discuss the case of 2 samples which will be useful in the
next lecture.

THM 22.2 (Covariance: Two-Sample Case) We have

18
F(0,0,2) = 4L,
P2+ 13p+ 18
6
F1,1,1)=4—————,
p? 4+ 13p + 18
and
4
F(2,2,0) =4—5———.
p? +13p+ 18

(The factor of 4 comes from the difference between coalescence time and tree
length.)

Proof: Note that F(i,j,k) = 0 for z = (0,0,1), (1,0,1), (1,1,0) (0,1, 1),
(2,1,0), and (1, 2,0). Hence, we get the following system of equations,

P 4
F(0,0,2) = —F(1,1,1) + —
(0,0,2) = 7 F(LL D + 2=

2
F(0,0,2) + —2%_p(2,2,0)

P L= (p/2) +3

(p/2)+3
F(2,2,0) = §F(1, 1),

This system is straighforward to solve. See [Dur08]. |

Further reading

The material in this section was taken from Chapter 3 of the excellent mono-
graph [Dur08].
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