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1 K alleles

When considering more than 2 alleles, we need a vector of frequencies to keep
track of the state of the population. In the diffusion limit, this leads to a multidi-
mensional diffusion. Although the limit process can be derived from the Wright-
Fisher, as an aside we describe instead a derivation based on the so-called Moran
model.

1.1 Moran model

The Moran model is a population dynamics model similar to the Wright-Fisher
model where the assumption of non-overlapping generations is relaxed. We first
describe the model without mutation or selection.

No mutation/selection. Suppose we have a population with 2N haploids. In
continuous time, each individual dies at rate 1 and is replaced by a copy of a uni-
formly selected individual in the population.

We observe that, when run backwards in time at rate N , this process leads to
Kingman’s coalescent in theN →∞ limit. Indeed, with k lineages, a death occurs
at rate kN and a replacement within the current samples occurs with probability

k − 1
2N

,

leading to a coalescence at rate

N
k(k − 1)

2N
→ k(k − 1)

2
,

as in the standard coalescent.
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Including mutation/selection. Now assume that each individual has one of K
alleles. Mutations between states i and j occur at rate φij . Denote by n =
(n1, . . . , nK) the state of the population. Moreover, letting the relative fitness of
allele i be 1− si for i = 1, . . . ,K, we assume that overall rate of change is

n→ n+ ei − ej ,

at rate
nj

( ni
2N

(1− si) + φji

)
.

In other words, when a j-individual dies we propose a replacement uniformly at
random. Say an i-individual is picked for the replacement, then the replacement
is accepted with probability (1 − si). Otherwise, no replacement occurs and the
original individual does not die.

1.2 Multidimensional diffusion limit

Assume that the relative fitnesses and mutation rates scale as

φij
N

= βij ,
si
N

= γi.

The infinitesimal drift and variance are now a vector and matrix respectively. For
instance the expected displacement of the frequency of i-types started at

x = (x1, . . . , xK) =
( n1

2N
, . . . ,

nK
2N

)
is

Ex[∆hXi(0)]

=
h

2N

∑
j 6=i

nj

( ni
2N

(1− si) + φji

)
−
∑
j 6=i

ni

( nj
2N

(1− sj) + φij

)+ o(h).

Running time at rate N and taking a limit N →∞, we get the infinitesimal drift

µi(x) = −xi
∑
j

βij +
∑
j

xjβji + xi
∑
j

xj(γj − γi).

(We set φii = 0.) Similarly, for the covariance,

Ex[∆hXi(0)∆hXj(0)]

=
h

(2N)2
{
nj

( ni
2N

(1− si) + φji

)
+ ni

( nj
2N

(1− sj) + φij

)}
+ o(h).
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Running time at rate N and taking a limit N → ∞, we get the infinitesimal co-
variance,

σ2
ij(x) = −xixj .

Similarly,
σ2
ii(x) = xi(1− xi).

2 Hill-Robertson interference

As an application of the previous section, we consider the interference between two
advantageous alleles. Consider two loci with alleles A/a and B/b. Suppose that
the population is originally made of ab, and that the advantageous alleles A and B
arise. If A arises first its genetic background is Ab. If, further, B arises when A is
still at a low frequency it is likely that the genetic background of the B mutation
is aB. The Hill-Roberston interference is the observation that, in the absence of
recombination between the two loci, there is a competition between the fixation of
A and B. The overall fixation probability of either allele is then reduced. This is
an argument for the evolution of recombination.

Formalization. Suppose we have three alleles aB, Ab, and ab, which we call 1,
2, and 3 respectively, with relative fitnesses 1 − s, 1 − s and 1 − 2s. To compute
the probability that 1 fixates in the absence of mutation, u(x), we need to solve (as
we did in the one-dimensional case)

Lu = 0,

with appropriate boundary conditions, where the infinitesimal generator is

Lf =
1
2
x1(1− x1)D11f − x1x2D12f +

1
2
x2(1− x2)D22f

+ x1

∑
j

xj(γj − γ1)D1f + x2

∑
j

xj(γj − γ2)D2f,

where we only keep track of x1 ≥ 0 and x2 ≥ 0 with domain 0 ≤ x1+x2 ≤ 1. (For
a formal justification, see [Dur08].) The boundary conditions can easily be derived
from the one-dimensional case. When x1 = 0, u(x) = 0. When x1 + x2 = 1,
u(x) = x1 (since this is effectively the same as a neutral case). When x2 = 0,

u(x) =
1− e−2σx1

1− e−2σ
,

where σ = γ3 − γ1 = 2Ns.
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It can be checked [Dur08] that the solution is

u(x) =
1− e−2σ(x1+x2)

1− e−2σ

x1

x1 + x2
.

The answer is somewhat intuitive as it corresponds to 3 losing against the combined
1/2 followed by a fair game between 1 and 2. For x1, x2 small, we have the
expansion,

u(x) ≈ 2σx1 − 2σ2x1(x1 + x2)
1− e−2σ

.

In comparison, in the absence of allele 2,

u(x) ≈ 2σx1 − 2σ2x2
1

1− e−2σ
.

If, instead, there was recombination between the two loci, the allele AB could
be formed and both alleles could fixate.

Further reading

The material in this section was taken from Chapter 8 of the excellent mono-
graph [Dur08].

References

[Dur08] Richard Durrett. Probability models for DNA sequence evolution. Proba-
bility and its Applications (New York). Springer, New York, second edi-
tion, 2008.


