Lecture 26 : Hill-Robertson interference

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [Dur08, Chapter 8].

1 Kalleles

When considering more than 2 alleles, we need a vector of frequencies to keep
track of the state of the population. In the diffusion limit, this leads to a multidi-
mensional diffusion. Although the limit process can be derived from the Wright-
Fisher, as an aside we describe instead a derivation based on the so-called Moran
model.

1.1 Moran model

The Moran model is a population dynamics model similar to the Wright-Fisher
model where the assumption of non-overlapping generations is relaxed. We first
describe the model without mutation or selection.

No mutation/selection. Suppose we have a population with 2N haploids. In
continuous time, each individual dies at rate 1 and is replaced by a copy of a uni-
formly selected individual in the population.

We observe that, when run backwards in time at rate /N, this process leads to
Kingman’s coalescent in the N — oo limit. Indeed, with k lineages, a death occurs
at rate kN and a replacement within the current samples occurs with probability

k—1

2N’
leading to a coalescence at rate

k(k—1)  k(k—1)
NN 3

as in the standard coalescent.
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Including mutation/selection. Now assume that each individual has one of K
alleles. Mutations between states 7 and j occur at rate ¢;;. Denote by n =
(n1,...,nk) the state of the population. Moreover, letting the relative fitness of
alleletbe 1 —s; fori =1,..., K, we assume that overall rate of change is

n—n+e; — ey,

at rate .

(G n ).
In other words, when a j-individual dies we propose a replacement uniformly at
random. Say an ¢-individual is picked for the replacement, then the replacement

is accepted with probability (1 — s;). Otherwise, no replacement occurs and the
original individual does not die.

1.2 Multidimensional diffusion limit

Assume that the relative fitnesses and mutation rates scale as

Pij _ g _

W = ﬂz]v N = Yi-
The infinitesimal drift and variance are now a vector and matrix respectively. For
instance the expected displacement of the frequency of i-types started at

S

ni nK)

l':(iUl,...,l'K):(ﬁ,...,ﬁ

E.[ArX;(0)]
e[S G- o) S (g0 ar ) an

Running time at rate [NV and taking a limit N — oo, we get the infinitesimal drift
pi(r) = =2 Y B+ > @B+ xi Yy wi(vy — v)-
J J J
(We set ¢;; = 0.) Similarly, for the covariance,
E.[ApXi(0)AX;(0)]

- (2]}\l[)2 {nj (%(1 —s) + ¢jz‘> +n; <%(1 — )+ d%j)} +oh).
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Running time at rate NV and taking a limit N — oo, we get the infinitesimal co-
variance,
oii(z) = —zx;j.

Similarly,
o2 (x) = xi(1 — x;).

2 Hill-Robertson interference

As an application of the previous section, we consider the interference between two
advantageous alleles. Consider two loci with alleles A/a and B/b. Suppose that
the population is originally made of ab, and that the advantageous alleles A and B
arise. If A arises first its genetic background is Ab. If, further, B arises when A is
still at a low frequency it is likely that the genetic background of the B mutation
is aB. The Hill-Roberston interference is the observation that, in the absence of
recombination between the two loci, there is a competition between the fixation of
A and B. The overall fixation probability of either allele is then reduced. This is
an argument for the evolution of recombination.

Formalization. Suppose we have three alleles a B, Ab, and ab, which we call 1,
2, and 3 respectively, with relative fitnesses 1 — s, 1 — s and 1 — 2s. To compute
the probability that 1 fixates in the absence of mutation, u(x), we need to solve (as
we did in the one-dimensional case)

Lu=0,

with appropriate boundary conditions, where the infinitesimal generator is

1 1
Lf= §$1(1 —x1)Dn f —x122D1af + 7w2(1 —x2)Daa f
+ a4 ZZU] - D1f+l‘2zfﬂj —72)Daf,

where we only keep track of 1 > 0 and 2 > 0 with domain 0 < z142x2 < 1. (For
a formal justification, see [Dur08].) The boundary conditions can easily be derived
from the one-dimensional case. When z; = 0, u(z) = 0. When z; + 22 = 1,
u(z) = 1 (since this is effectively the same as a neutral case). When z3 = 0,

1— 6720'331

u(z) = 1 _e—20

where 0 = 73 — 1 = 2Ns.
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It can be checked [Dur(08] that the solution is

1— 6—20(x1+ac2) x1

1—e20 gy +4+a9

u(z) =

The answer is somewhat intuitive as it corresponds to 3 losing against the combined
1/2 followed by a fair game between 1 and 2. For z1,xy small, we have the
expansion,
2011 — 20
() ~ o1 o®r1(x1 + x2)
1—e 2

In comparison, in the absence of allele 2,

2011 — 20222
ul@) T e

If, instead, there was recombination between the two loci, the allele AB could
be formed and both alleles could fixate.

Further reading

The material in this section was taken from Chapter 8 of the excellent mono-
graph [Dur0O8].
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