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Previous class

Recall:

DEF 3.1 (X-tree) An X-tree T = (T, φ) is an ordered pair where T is a tree and
φ : X → V is such that X is finite and φ(X) contains all vertices with degree at
most 2. (Note: It is neither surjective nor injective.) Two X-trees T1 = (T1, φ1)
and T2 = (T2, φ2) are isomorphic if there is a graph isomorphism Ψ between T1

and T2 such that φ2 = Ψ ◦ φ1.

1 Characters

Biological data can be formalized using the following notion.

DEF 3.2 (Characters) Let C be a set of character states. A (full) character on X
is a function from X to C. A character is binary if |C| = 2.

DEF 3.3 (Character Convexity) A character χ is convex on an X-tree T =
(T, φ) with T = (V,E) if there is a function χ̄ : V → C such that

1. χ̄ ◦ φ = χ (i.e., χ̄ is an extension of χ to all vertices).

2. For each α ∈ C the subgraph of T induced by {v ∈ V : χ̄(v) = α} is
connected (i.e., any particular state transition (or its reverse) occurs only
once in the tree).

Character convexity corresponds to evolutionary innovations occurring only once
in the tree of life, that is, in the absence of reverse transition (a new state arising but
later reverting to its earlier state) and convergent transition (a new state occuring
in two different parts of the tree).
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DEF 3.4 (Character compatibility) A collection of characters on X is compati-
ble if there is an X-tree on which all of them are convex.

Finding such a tree is known as the perfect phylogeny problem and, in the bi-
nary character case, serves as a motivation (among others) to derive the Splits-
Equivalence Theorem which we now consider.

2 Statement of the Splits-Equivalence Theorem

DEF 3.5 (X-splits) An X-split A|B is a (nontrivial) bipartition of X into non-
empty subsets. Let T = (T, φ) be an X-tree with T = (V,E). To each edge
e of T corresponds an X-split as follows: T\e consists of two components with
vertex sets V1, V2; φ−1(V1)|φ−1(V2) is the X-split corresponding to e. We denote
by Σ(T ) the collection of splits induced by T .

DEF 3.6 (Split Compatibility) X-splits A1|B2 and A2|B2 are compatible if at
least one of the setsC1 = A1∩A2,C2 = A1∩B2,C3 = B1∩A2 andC4 = B1∩B2

is empty. (Any twoCis corresponding to a partition ofA1,B1,A2, orB2 must have
a non-empty union. In particular, at least two of the Cis must be non-empty and
equality happens exactly when the splits are identical.)

It is straightforward to check that the splits induced by an X-tree are pairwise
compatible. There is also a converse.

THM 3.7 (Splits-Equivalence Theorem) Let Σ be a collection ofX-splits. Then,
Σ = Σ(T ) for someX-tree T if and only if the splits in Σ are pairwise compatible.
Such tree is unique up to isomorphism.

The easy direction follows from the following lemma.

LEM 3.8 Let σ1 6= σ2 ∈ Σ(T ). Then X can be partitioned into three sets
X1, X2, X3 such that σ1 = X1|(X2∪X3), σ2 = (X1∪X2)|X3 andX1∩X3 = ∅.

Proof: By definition, σi corresponds to an edge ei = {ui, vi} of T . W.l.o.g., there
is a path connecting e1 and e2 whose endpoints are u1 6= u2. Let V1, V2, V3 be
the vertex sets of the connected components of T\{e1, e2} containing respectively
u1, v1, u2 and let Xi = φ−1(Vi).

3 Proof of the Splits-Equivalence Theorem

The heart of the nontrivial direction is an efficient algorithm for reconstructing
phylogenies from splits known as Tree Popping.
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• Input: A collection Σ = {σ1, . . . , σk} pairwise compatible X-splits.

• Output: A tree T such that Σ(T ) = Σ.

– Initialization: Let T0 = (T0, φ0) be made of a single vertex labelled by
X .

– For i = 1 . . . k:

∗ Set σi = Ri|Gi.
∗ Colour red (respectively green) the vertices of Ti−1 in Ri (respec-

tively Gi).
∗ Find the unique vertex w in Ti−1 such that all connected compo-

nents of Ti−1\{w} are monochromatic (i.e., all coloured vertices
have the same colour).
∗ Construct Ti = (Ti, φi) such that Σ(Ti) = {σ1, . . . , σi} by replac-

ing w in Ti−1 with a new edge e = {wR, wG} as follows: the red
(respectively green) components of Ti−1\{w} are incident with
wR (respectively wG); the red (respectively green) labels of w are
assigned to wR (respectively wG).

The fact that the Tree Popping algorithm works is part of the proof of the Splits-
Equivalence Theorem.

Proof:(of Splits-Equivalence Theorem) Assume Σ = {σ1, . . . , σk} is a collection
of pairwise compatible splits. We prove that Σ = Σ(T ) for some T by induction
on k. The result is trivial for k = 0. Now assume that k ≥ 1 and that the result
holds for k−1. Hence, there is a unique Tk−1 = (Tk−1, φk−1) such that Σ(Tk−1) =
{σ1, . . . , σk−1}. We apply the next lemma with T = Tk−1 and σ = σk.

LEM 3.9 (Label Painting Lemma) Let T be an X-tree with T = (V,E). Let σ
be anX-split such that σ /∈ Σ(T ) but σ is compatible with all splits in Σ(T ). Then,
there is a unique vertex w ∈ V such that the connected components of T\{w} are
monochromatic.

Proof: Existence of w. We proceed by giving an orientation to each edge e =
{u, v} ∈ E. By compatibility, there is exactly one component of T\{e} which
is monochromatic. Orient e away from that component. The resulting directed
tree must have a sink w, that is, a vertex with no outgoing edge (indeed, start at
any vertex and follow the directed edges; this process must stop in a finite tree
otherwise there would be a cycle).
Uniqueness ofw. Assume by contradiction that there are two such verticesw 6= w′.
Choose an edge e on the path between w and w′. W.l.o.g., assume the component
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of T\{e} containing w is not monochromatic (by the compatibility assumption).
Considering the component of T\{w′} containing w gives a contradiction.

We now return to the proof of Theorem 3.7. Applying the procedure in the Tree
Popping algorithm gives an X-tree Tk identical to Tk−1 except for a single extra
edge inducing the split σk. The uniqueness of Tk follows from the uniqueness of
Tk−1 and the uniqueness of w.

4 Applications of the Splits-Equivalence Theorem

We give two further applications of Theorem 3.7.

4.1 Refinement

The characterization ofX-trees in terms ofX-splits provides a natural partial order
the set of X-trees.

DEF 3.10 (Refinement) Let P(X) be the set of X-trees. For T , T ′ ∈ P(X), we
write T ≤ T ′ when Σ(T ) ⊆ Σ(T ′) and we say that T ′ refines T .

It can be checked that (P(X),≤) is a partial order. (Recall that a partial order on
a set S is a relation ≤ such that for all x, y, z ∈ S:

1. (Reflexivity) x ≤ x.

2. (Antisymmetry) If x ≤ y and y ≤ x then x = y.

3. (Transitivity) If x ≤ y and y ≤ z then x ≤ z.)

4.2 Splits metric

The symmetric difference A4B of two sets A,B is the set (A\B) ∪ (B\A).

DEF 3.11 (Splits Metric) For a pair T , T ′ ∈ P(X), we let

d(T , T ′) = |Σ(T )4Σ(T ′)|

be the splits metric between T and T ′.

It can be checked that d is indeed a metric. (Recall that a nonnegative function d
on S × S is a metric if for all x, y, z ∈ S:

1. (Definiteness) d(x, y) = 0 if and only if x = y.

2. (Symmetry) d(x, y) = d(y, x).

3. (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z).)
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4.3 Consensus

For a collection P of X-trees, let

Σ(P) = ∪T ∈PΣ(T ),

and for σ ∈ Σ(P) let nP(σ) be the number of X-trees in P that induce σ. Define

Σ1/2(P) =
{
σ ∈ Σ(P) :

n(σ)
|P|

>
1
2

}
.

THM 3.12 (Majority-Rule Consensus) Σ1/2(P) is the set ofX-splits induced by
a unique X-tree which is called the majority-rule consensus tree.

Proof: Take in two σ1 6= σ2 ∈ Σ1/2(P). By construction, there must be T ∈ P
such that σ1 and σ2 are both induced by T . Hence they are pairwise compatible
and we are done by the Splits-Equivalence Theorem.

Further reading

The definitions and results discussed here were taken from Chapters 3 and 4 of
[SS03]. Much more on the subject can be found in that excellent monograph. See
also [SS03] for the relevant bibliographic references.
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