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1 Motivation

For diploid organisms (e.g. humans), each chromosome is present in two non-exact
copies and the description of all the data from a single chromosome is called a
haplotype. Obtaining haplotype data is important in applications such as analyzing
complex diseases, however this is a very difficult problem to solve experimentally
and finding mixed genotype data is much less technically difficult and cost effec-
tive. So, while we can determine that at a specific site (if we call the two states,
or alleles this state can occupy 0 and 1), an individual may have either two 0’s,
two 1’s or one 0 and one 1, in the last case, distinguishing which state comes from
which chromosome is very hard to discern experimentally. Therefore, we have the
problem that experimentally, we may not be able to distinguish between the case
where the haplotype of an individual is either of the below pairs:{(

0
0

)
,

(
1
1

)}
,

{(
0
1

)
,

(
1
0

)}
since experimentally we only know this individual has two heterozygous sites.

At the moment, the problem seems intractable, certainly based on experimental
data of a single individual, without any a-priori knowledge about the state of the
sites, how could we ever hope to determine which of the above is the correct hap-
lotype of our individual? However, when one considers large populations, we have
some hope. Using standard assumptions based on mutation and recombination,
from the genotype data of an entire population, we may be able to actually rule out
some haplotypes that are consistent with experimental data, but would have been
unattainable given our heredity model. Resolving this problem is the focus of this
paper [2].

2 The Computational Problem

We can formulate the haplotyping problem in a strictly computational setting as
follows. On input n genotype vectors, each of length m where each value is either
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0, 1 or 2 where the first two values corresponding to homozygous sites with that
state and 2 corresponds to a heterozygous site. A solution to the Haplotype Infer-
ence Problem is a set of n pairs of binary vectors such that for any vector in the
input v, there are two unique associated vectors in the solution v1, v2 such that if
v has 0 or 1 at a given index, both vi have the same value at this index. If v has
a 2 at a given index, exactly one of the vi should have a 0 at this index while the
other has value 1. In other words, v1 and v2 are a feasible as a true haplotype pair
that give rise to the genotype v. For example either of the above vectors would be
possible solutions to the problem if n = 1 and v = (2, 2)T .

3 The Model

In order to divine haplotype data from the genotype data of a population, as dis-
cussed, we will be required to take a certain genetic model since the experimental
data will not be sufficient to reconstruct the entire haplotype. In particular we will
make the no recombination in large blocks assumption that amounts to assuming
that “each sequence has a single ancestor in the previous generation” [1]. We will
also use the infinite sites assumption which states that the sites are so sparse rela-
tive to the mutation rate that in the time frame of interest, there will only be at most
one mutation in any one site.

3.1 Phylogeny

Now, we may add some more restrictions to the computational problem through
assumptions made in our model to restrict the possible solutions. Our model al-
lows us to assume that the 2n haplotypes can be embedded as the leaves of an
evolutionary tree where each of the m sites correspond to exactly one edge of the
tree (where evolution occured at this site, by the infinite sites assumption, each site
is associated with at most one edge. The recombination assumption allows us to
embed the data in this hereditary tree.) and every internal edge is labeled in such
a manner. Such a tree is called a (binary) perfect phylogeny. By using a majority
assignment trick from phylogenetics, we may assume without loss of generality
that the root vector is 0m (this may result in some relabeling of the initial data).
Usually such a problem is stated with the 2n vectors to be the leaves of the trees as
the rows of a matrix B with columns corresponding to the sites, or internal edges,
of the phylogenetic tree.

Previous work on the problem includes the Theorem of Perfect Phylogeny
which states that a perfect phylogeny exists for a matrix B if and only if for each
pair of columns, there are no three rows with values 0, 1; 1, 0 and 1, 1 in those two
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columns [3, 4].

4 Path Information

The main tool we will use, is to gain knowledge of paths that much exist in the
phylogenetic tree for our data. From this data, we will be able to put enough
restrictions on what the real haplotype data must have been to extrapolate. We will
call the two haplotypes corresponding to the same genotype i and i′ and the initial
dataset B if there is no ambiguity. The first important observation is as follows:

4.1 What if Each Site has at least one Homozygous Site

For simplicity, assume for a moment that each column of our dataset S had at least
one homozygous 1 site (the case where there are only homozygous 0 sites are not
interesting since we assume the phylogenetic tree to be initialized at 0m). Then,
surprisingly, it is possible to exactly trace the internal edges (which recall corre-
spond to columns in S) of the phylogenetic tree from the least common ancestor
of any i, i′ to the root node with order!

The fact that we can trace the least common ancestor to the root without order
is not surprising since by the infinite sites model, if both vectors have a 1 in a
given site, they must be children of the unique edge corresponding to that site.
What is surprising, is that the genotype data gives enough information to actually
deduce the number of leaves in the subtree rooted by that edge (it corresponds to
2× the number of vectors with a homozygous 1 and 1× the number of vectors
with a heterozygous site at that index). Since as we progress down the path, the
number of leaves in the subtree must decrease, this allows us to trace, with order,
the edges from the least common ancestor of i, i′ (the haplotypes corresponding to
a single genotype) to the root. In the case where there are no 2 sites, both i and
i′ are actually neighbors in the tree and this provides a complete description! Due
to the following handy lemma, if there are 2 sites, using the technique above we
can still create an ‘initial’ phylogeny tree that we can then determine the additional
information for later:

Lemma: Let C1 denote the columns of S that contain at least one 1 entry. In
any perfect phylogeny T (S) for S, no path from the room can encounter an edge
labeled with a column in C1 if it has already encountered an edge labeled with a
column not in C1.

Using this observation, we can now create an ‘initial’ perfect phylogeny for
S corresponding to all edges that have at least one 1 entry in their corresponding
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column.

4.2 Completing the Phylogeny

Now, we by using some more tricks on tree, we can actually compute a set of paths
such that any tree which contains all of these paths will serve as a phylogenetic
tree for our data. For example, say that a row i of S contains some 2 values. Then,
it will be necessary that the path from the two haplotypes go through the edges
(column indices) that have these entries two. By adding some redundant edges to
‘glue’ the tree together, we can get the guarantee that any tree that contained these
edges serves as a phylogenetic tree for our data and the question becomes:

Question: Given unordered paths P1, P2, . . . , Pn with Pi ⊂ E a set of r
distinct integers, find a tree which contains each path Pi or determine that no path
exists.

The above is known as the Graph Realization Problem and the main contri-
bution of the paper is to reduce the original problem to this well known problem
for which there are efficient known solutions. Clearly once we are given a valid
phylogenetic tree, we can find the correct state assignment of the leaves (since each
edge is named with the index where the mutation occurs and 0m serves as the root),
this will allows us to acquire the desired haplotype data. Known results concerning
whether or not solutions to the Graph Realization Problem are unique also gives a
method by which to determine if the assignment of haplotype data is unique.

5 Reconstructing the Haplotypes

Now, assume that through the above graph realization tool, we’re able to create a
valid phylogenetic tree for our input genotypes. While interesting, we’ve strayed a
little far from our original goal, correctly assigning the haplotype values. However,
this is easy to remedy. Say we have a genotype g and we would like to know where
to place the haplotype leaves i and i′ on our phylogenetic tree. Notice that after
we place these on the tree we have our assignment. This problem actually is rather
simple. We know the path from i to i′ corresponds exactly to the sites where g has
2 values. Therefore, we can simply place i and i′ on opposite ends of this path,
allowing us to find a valid assignment! While we’ve skipped over virtually all of
the subtleties of the work, we hope we’ve sparked some of the readers interest
and would like to urge him or her to consult the original work referenced in the
bibliography.
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