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Introduction 
  
 We will look at a maximum likelihood method for the alignment of two DNA 
sequences which is based upon a statistical model of DNA sequence evolution.  This 
approach allows only substitutions, single-base insertions, and single-base deletions.  It is 
hoped to eventually replace this model with a more realistic version that can allow other 
events (such as inversions, large insertions, and large deletions). 
 
 The evolutionary model is a Markov process: the probability of a transition from 
the current state of a sequence is independent of the previous states of the sequences.  
The likelihood of a pair of modern sequences, A and B, separated from a common 
ancestral sequence C by divergence time t is 
 

Pt(A,B) = Σ C  P∞(C) Pt(A|C)Pt
 

(B|C) . 

Here, P∞(C) is the equilibrium probability of sequence C, and Pt

 

(A|C) is the transition 
probability from sequence C to sequence A.  The values of these probabilities depend on 
parameters which are pertinent to the evolutionary process.  We assume reversibility: 

P∞(C) Pt(A|C) = P∞(A) Pt
 

(C|A) for all A and C, and all t > 0 . 

Using this fact, we can write 
 

Pt(A,B) = Σ C  P∞(A) Pt(B|C)Pt(C|A) = P∞(A) P2t
 

(B|A) . 

This implies that it is unnecessary to sum over all possible ancestral sequences to 
compute the probability of two modern sequences arising from a common ancestral 
sequence.  Instead, it is sufficient to treat one modern sequence as if it is the ancestor of 
the other. 
 
 The calculation of a transition probability can be separated into two components: 
a substitution process and an insertion-deletion process. 
 
 
 
 



 
The Substitution Process 
 

For the sake of simplicity, we adopt the Felsenstein (1981) substitution model 
(other reversible models could be used).   Recall that a nucleotide can take on any of the 
values A, G, C, or T.  Under this model, when a substation occurs, a base will be replaced 
by A, G, C, or T with respective probabilities πA, πG, πC, or πT

 

 (the equilibrium 
probabilities).  Let s denote the rate of base substitution.  The transition probability that a 
nucleotide which begins as type i is of type j at time t is 

   fij(t)= πj(1- e-st

 
)    if i ≠ j 

fii(t) = e-st + πi(1- e-st

 
) .  

Note that it is possible under this model to, for instance, to substitute an A by another A.  
 
 
The Insertion-Deletion Process 
  
 For simplicity, we think of the process in terms of imaginary links that separate 
the DNA bases of a sequence.  In our model, a sequence of N bases has N normal links 
and one immortal link.  There is a normal link (which we denote by a *) to the right of 
each base.  The leftmost base in the sequence is considered to have an immortal link 
(denoted by $) to its left.  For instance, the sequence AGGGCCTA can be depicted as 
 

$ A * G * G * G * C * C * T * A * . 
 
If the presence of nucleotides is considered without regard to the actual types of 
nucleotides, we can represent the sequence as: 
 

$  *  *  *  *  *  *  *  * . 
 
The insertion-deletion process is framed as a birth-death process of these links.  A birth 
or death of one link does not affect the probability of a birth or death of another link.  
Both types of links can be associated with births, and they have the same birth rate 
(which we denote by λ).  A newborn link is always a normal link.  We adopt the 
convention that a new link appears immediately to the right of its parent link.  The birth 
of a normal link is accompanied by the birth of a DNA base immediately to its left.  The 
probabilities that the newborn DNA base will be A, G, C, or T are, respectively, πA, πG, 
πC, and πT
 

.  Normal links are subject to death (at rate µ), but not immortal links.   

 At any given instant, a sequence will either increase or decrease its length by a 
single nucleotide or stay the same length. The chance of more than one birth or death 
taking place within a sequence at the same instant is negligible.  A sequence of n 
nucleotides will increase to length n + 1 at rate (n + 1)λ, and decrease to length n at rate 
nµ.  The presence of immortal links in this model is necessary for the existence of a 



realistic equilibrium distribution of sequence lengths.  Without immortal links, sequences 
would tend over time to length 0 or infinity. 
 
  
Likelihood of a Pair of DNA Sequences 
 
 The calculation of the likelihood requires the calculation of transition probabilities 
from ancestral sequence to descendant sequence, as well as calculation of the equilibrium 
probability of the ancestral sequence.   
 If the ancestral sequence A has a length of n nucleotides, then 
 

P∞(A) = γn Π i=1,…,n  π
 

n(i) 

where n(i) denotes the nucleotide as position i, and γn is the equilibrium probability of 
sequences of n nucleotides in length.  It can be shown that the distribution of γn
under the birth-death model is the geometric distribution 

 obtained 

 
γn = (1 – λ/µ)(λ/μ)n 

 
. 

 Now we turn to transition probabilities.  Various paths are possible for a transition 
from one sequence to another.  The transition probability from one sequence to another is 
the sum of the probabilities of all possible paths connecting the two sequences.  The 
particular path of a transition from one sequence to another can be expressed well by 
alignment.  For example, consider the following alignment, which we denote by α: 
 

– T G T – C – 
G – C – A C A 

 
We can represent the information on presence and absence of bases in α by links and 
denote it α’: 
 

$  –  *  *  *  –  *  – 
$  *  –  *  –  *  *  * 

 
Let θ denote the collection of parameters µt, λt, st, πA, πG, πC, and πT

 

.  The probability of 
a specific transition path represented by α is  

P(α | θ) = P(α, α’ | θ) = P(α | α’, θ) P(α’ | θ) . 
 

P(α’ | θ) is the product of γn

 

 and the appropriate transition probabilities for links (which 
we will describe shortly).  P(α | α’, θ) is a product of equilibrium and transition 
probabilities (determined by the way the descendent sequence evolves from the ancestral 
sequence through the births of new links and nucleotide substitutions).   

 Three types of transition probabilities are considered for links: pn(t) is the 
probability that after time t, n links are descended from a normal link, including the 



original link; pn’(t) is the probability that after time t, n links are descended from a 
normal link, but the original dies; pn

 

’’(t) is the probability that after time t, the immortal 
links has n descendants, including itself.   

 Returning to the example above, we have 
 
     P(α’ | θ) = γ4 p2’’(t) p0’(t) p1(t) p1’(t) p2
 

(t)  

    P(α | α’, θ) = πG fGC(t) πA fCC(t) πA 
 

. 

 
 Explicit expressions can be obtained for pn’’(t), pn’’(t), and pn

 

’’(t) by solving the 
differential equations which govern the birth-death process.  The solutions are: 

  p0(t) = p0
 

’’(t) = 0  

  pn(t) = e-μt [1 – λβ(t)] [λβ(t)]n-1

 
 ,    n > 0 

  pn’(t) = [1- e-μt - μβ(t)] [1 – λβ(t)] [λβ(t)]n-1

 
 ,   n > 0 

  p0
 

’(t) = μβ(t) 

  pn’’(t) = [1 – λβ(t)] [λβ(t)]n-1

 
 ,     n > 0 

 
where, β(t) = (1- e(λ-µ)t)/(µ - λe(λ-µ)t

 
).  . 

 
Alignment Algorithm 
 
 The alignment algorithm is a recursive algorithm that can produce maximum 
likelihood alignment between a sequence A and a sequence B and its likelihood for a 
given value of θ.  The procedure consists of gradually filling in the entries of a matrix.  
Each matrix position corresponds to a subsequence of A and a subsequence of B. Each 
entry in the matrix is determined by considering its previously calculated neighboring 
entries.   
 
 Let Am denote the subsequence consisting of the first m bases of the sequence A.  
Define Bn analogously. Because the model is reversible, we can, without loss of 
generality, consider A to be an ancestor of B.  Let S(Am,Bn) denote the set of all possible 
alignments between Am and Bn.  Each possible alignment α(Am,Bn) between Am and Bn is 
a member of exactly one of the following three subsets of S(Am,Bn
 

): 

S0(Am,Bn) = { α(Am,Bn) s.t. rightmost link of Am has no descendant links in Bn
 

 }   

S1(Am,Bn) = { α(Am,Bn) s.t. rightmost link of Am has exactly one descendant link in Bn }  



  
S2(Am,Bn) = { α(Am,Bn) s.t. rightmost link of Am has at least two descendant links in Bn
 

 }   

 
The likelihood of a specific subsequence alignment α(Am,Bn) for a certain value of θ will 
be written lθ [αi (Am,Bn)] where i = 0,1,or 2, depending on the subset of S(Am,Bn) to 
which α(Am,Bn) belongs.  For a certain value of θ, the alignment of highest likelihood in 
Si(Am,Bn) is written αmax

i(Am,Bn
 

).  Additionally, define 

lθ [αmax(Am,Bn)] = max i { lθ [αmax
i (Am,Bn

 
)] }. 

The maximum likelihood alignment between A and B for a particular value of θ can be 
determined by a recursive procedure that updates each lθ [αmax

i (Am,Bn
 

)].  

Let a(m) denote the type of nucleotide at the mth position of sequence A (define b(n) 
analogously).  The recursive procedure starts with the boundary conditions 
 

lθ [αmax
0 (A0,B0)] = lθ [αmax

2 (A0,B0
 

)] = 0 

lθ [αmax
1 (A0,B0)] = γ0 p1

 
’’(t) 

lθ [αmax
1 (Am,B0)] = lθ [αmax

2 (Am,B0
 

)] = 0 , where 1 ≤ m ≤ length(A) 

lθ [αmax
0 (Am,B0)] = γm p1’’(t) Π i=1,…,m  πa(i)

 
 , where 1 ≤ m ≤ length(A) 

lθ [αmax
0 (A0,Bn)] = lθ [αmax

1 (A0,Bn
 

)] = 0 , where 1 ≤ n ≤ length(B) 

lθ [αmax
2 (A0,Bn)] = γ0 pn+1’’(t) Π i=1,…,n  πb(i)

 
 ,where 1 ≤ n ≤ length(B) . 

 
For 1 ≤ m ≤ length(A) and 1 ≤ n ≤ length(B), the recursive procedure follows these rules: 
 
 
lθ [αmax

0 (Am,Bn)] = (λ/µ) πa(m) p0’(t) lθ [αmax(Am-1,Bn
 

)]  

lθ [αmax
1 (Am,Bn)] =  (λ/µ) πa(m) max[f a(m)b(n)(t) p1(t) , πb(n) p1’(t) ] lθ [αmax(Am-1,Bn-1

 
)] 

lθ [αmax
2 (Am,Bn)] = πb(n) λ β(t) max{ lθ [αmax

1 (Am,Bn-1)] , lθ [αmax
2 (Am,Bn-1

 
)] } 

 
The maximum likelihood alignment between A and B has likelihood  
 

lθ [αmax(A,B)] = max i { lθ [αmax
i

 
 (A,B)] }. 

Recovery of the actual maximum likelihood alignment is obtained by tracing back 
through the likelihood matrix on the path that led to the maximum likelihood value. 
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