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1 The Problem

As we have learned throughout the course, it can be quite difficult to reconstruct the
parameters of a phylogenetic model from the marginal distribution on the leaves
of its tree. We have studied several estimators, but none have allowed us to pre-
cisely determine the shape or structure of such a tree without first understanding
the nucleotide substitution process.

Using phylogenetic invariants, one can determine this tree structure without
having to estimate any mutation model parameters. We say that a set of phylo-
genetic invariants, a phylogenetic ideal, fits a tree model if all polynomials in the
ideal evaluate to zero on all possible distributions of bases for that tree. Determin-
ing whether mutations exhibit a certain tree structure becomes a simple problem
of evaluating a set of polynomials against the observed frequencies of these muta-
tions.

Remarkably, Evans and Speed [2] determine all possible phylogenetic invari-
ants for trees with certain continuous-time mutation models: they require that the
distribution of bases at the root be uniform, and that the infinitesimal generator
matrix for the stochastic transition matrices at interior vertices admit a particu-
lar group structure. These assumptions enable some very clever Fourier analysis,
analysis which allows for the explicit construction of the desired invariants.

2 The Set-Up

Consider a finite rooted tree T with root p. To each vertex v € T \ {p} there
corresponds a neighbor vertex o(v) closest to p in the usual graph-theoretic sense.
Let L denote the set of leaves of T.

Associate to each element ¢ € L an {A, G, C,T'}-valued random variable Yy
with a distribution induced by the following mutation model. Let 7w be a proba-
bility distribution on {A, G, C, T}, and let P®) be the stochastic substitution ma-
trix for the edge (o(v),v), v € V \ p. The natural probability distribution x on
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{A4,G,C, TV is

M((iv)veV =T Zp H P a(v )
vEV\{p}

and the most obvious the marginal distribution on {Y7}scy, is

P[(Yy)eer = (ie)eeL] = Y _ > ulliv)vevin (ie)eer).

veV\Li,e{A,G,C,T}

One could stop here and, using some extremely simple linear algebraic tech-
niques, construct invariants for some basic trees whose substitution matrices are
all equal. In fact, this was one of the first approaches to the invariant construction
problem; see [1] for further reading.

Instead, we assume that our stochastic transition matrices arise from a continu-
ous time Markov chain on the state space { A, G, C, T'}. The infinitesimal generator
matrix for our models will have the form

—(a+B+7) o B ¥
Q- a —(a+B8+7) g A
B ot —(a+B+7) o

¥ B o —(a+B+7)

That is, e’ represents the transition matrix P(*) where e is the edge (o(v),v)
and the time between mutations is given by f.. One can show that this process
corresponds to a discrete time Markov model with a rate —(« + 3 + ) Poisson
process on the inter-mutation times. We label rows and columns of the ()-matrix
and its corresponding stochastic matrices in the order A, G, C,T.

You may have learned that Adenine and Guanine are chemically very similar,
as are Cytosine and Guanine. The matrix () expresses that there is a certain muta-
tion transitivity between the elements in these pairs A, G and C,T. Such a Q with
a, B,y distinct corresponds to the Kimura three-parameter model. When 3 = ~,
Q is said to generate the Kimura two-parameter model. When o« = 3 = ~, we
obtain the Jukes-Cantor model.

Moreover, Q has the property that its (i, 7)™ entry depends upon j — i, where
1,7 € {A,G,C, T} and addition between bases is given by the following table:

HQQ®+
H QO
Q9= QX
QeS8 AQQ
= Q QXN
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One can easily check that this table specifies a group G isomorphic to the Klein
four-group Z2 @ 72, pairs of binary integers under addition modulo 2. One possible
isomorphism is

A< (0,0), G+ (0,1), C«<(1,0), T« (1,1).

Mutations along tree edges can be described as group actions. For the simple
three-pronged tree with one root and three leaves, let Zy, Z1, Z2, Z3 be random
variables on {A, G, C, T} = G such that

Y1 =120+ 7y,
Yo = Zy + Zo,
Y3 = Zp + Zs,

where Zj has the same distribution as the root and Z;, Z5, Z3 have the appropriate
transition distributions.

Moreover, there exists a function ¢ which acts on elements of G such that
Q(i, ) = q(57%), where i, j € G. This is precisely the condition that enables us
to transform our continuous-time Markov process into a random walk on a group.
After reviewing some Fourier analysis, we will show how this observation allows
for the construction of polynomial invariants for a simple tree.

3 Fourier Analysis

Since G is abelian, any function on G has a corresponding Fourier transform, a
function acting on the dual group G. Recall that the dual group consists of a col-
lection of group homomorphisms mapping G into the unit circle in the complex
plane. That is,  is a character in G if x(g1 + g2) = x(g1)x(g2) forall g1, g2 € G.
It can be shown that a group and its dual are isomorphic.

The dual group G of our group G = Z2®72 consists of characters {1, ¢, v, ¢},
each its own inverse. The following table describes the action of G on G:

A G C T

<'> > (070) (Oa 1) (17 0) (17 1)
1 1 1 1 1

p 1 -1 1 -1

W 1 1 -1 -1

o 1 -1 -1 1

Though the Fourier transform does not crop-up in what follows, it plays a role
in Evans and Speed’s classification of all linear invariants. Recall that for a function
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f:G—-C,

FOO=> g x)f9), £ =@ LS g.x

geG XE(G

It can be shown that convolutions become products in the transform domain. Find-
ing QF—as is necessary for finding transition probabilities—is equivalent to con-
volving g with itself k times, a task easily accomplished using this Fourier analysis.

4 An Example

Consider the three-pronged tree of height 1 as described in the second section.
Observe that

E[(Y1, ¢)(Ya, ¥) (Y3, 1))

(Zo + Z1,0)(Zo + Za, ) (Zo + Z3, p0)]

(Zo, $)(Zo, )(Zo, 9)(Z1, §)(Z2, ) (Z3, ¢))]
(Zo + Zo, p0)(Z1, 9)(Z2,0)(Z3, p9)]

(Z1, &) [(Z2,9)] [(Z3, $9)] ,

where the second and third equalities follow from the fact that characters are ho-
momorphisms. The last line may be deduced from the independence of the Z;.
Arguing similarly, one can show equalities for permutations of the indices of the
Y; and Z; to conclude

(E [(Y1, ¢)(Ya, ) (Y3, 600)| E [(Y1, o) (Y2, ) (Y3, ¥)]
x E[(Y1,9)(Ya, ) (Y3, 9)])

II I EM™owe=o
1=i<j<30e{¢, 9,09}
a polynomial in the observed distributions at the leaves. Denoting t; 4 = P(Z; =
A) and likewise for the other three leaves and four bases, we obtain a ninth degree
polynomial in all twelve variables. Note that the expression above does not depend
upon the distribution at the root.

Evans and Speed show that this argument generalizes for all trees. They charac-
terize all polynomial invariants for these trees, provided that they have an infinites-
imal ¢) matrix of the desired form and exhibit a uniform distribution at the root.
For details, including the explicit form for these polynomials, see [2]. Allman and
Rhodes [1] give an excellent summary of other invariant construction techniques.
See their paper for other references.
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