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1 Introduction

The paper is based on the bijection between the set of phylogenetic tree with [
leaves and the set of perfect matchings on 2n points, M,,, (where n = [ — 1).
Using such bijection and analization a natural walk on Mn the paper gave sharp
rates of convergence for a natural Markov chain on the space of phylogenetic trees.
Roughly, the results show that %n log n steps are necessary and suffice to achieve
randomess.

2 Background and needed tools

2.1 Phylogenetic trees and random matchings

A phylogenetic tree with 1 leaves is a rooted binary tree with I labeled leaves. Let G
be a graph with vertex set V and edge set E. A perfect matching is a set of disjoint
edges containing all vertices. In the paper, we consider the perfect matchings on
2n points, as the way to divide 1, 2, ..., 2n into n couples. Here, we briefly describe
the correspondence between matchings and trees. Begin with a tree with [ labeled
leaves. Label the internal vertices sequentially with [+1,[+2, ..., 2(I—1) chosing at
each stage the ancestor which has both children labeled and who has the descendant
lowest possible available label. When all nodes are labeled, create a matching on
2n = 2(l — 1) vertices by grouping siblings. To go backwward, given a perfect
matching of 2n points, note that at least one matched pair has both entries from
1,2,3,...,n+ 1. All such labels are leaves; if there are several leaf-labeled pairs,
choose the pair with the smallest label. Give the next available label n +2 =141
to there parent node. There are then a new set of available labeled pairs. Choose
again the pair with the smallest label to take the next available label for its parent
and so on.
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2.2 Marrkov Chain

For matchings in M, a step in the walk is obtained by picking two matched pairs
at random, a random entry of each pair and transposing these entries.. For general
n > 2and x,y € M,, define:

—L _if  and y differ by a transposition

K(z,y) ={ n(n—1) (1)

0 otherwise

The Markov chain (1) has the uniform distribution 7(z) = 2"n!/(2n)! as unique
stationary distribution. Since K is symmetric, and so, reversible. Because of re-
versibility, K has an orthonormal basis of eigenvectors f;(z) with

Kfi(x) =Y K(z,y)fi(y) = Bifi(x)

Here j; is the associated eigenvalue and both f; and 3; are real. We may express
the chi-square distance as:

K™ (x,y) — n(y)|”
ez el = 3 BN ZTOE 5 g o
Y 4 1,371
In (2) K(y) = K™(z,y) = Y., K™ !(x,2)K(z,y) and a is a universal con-
stant. The result is sharp; if m = 3n(logn + c) for c positive, there is 2+ and
positive € = ¢(c) such that

| K —m|| > e for all n 3)

2.3 Group theory

Let P,, be the partition of n. Partition are written as A F n with A = (A, Ao, ..., \p), A1 >
A2 > ... > A > 0 Clearly, Say,, the symmetric group on 2n letters acts transi-
tively on matchings coordinate wise.

o((i1,12), (i3,94), - - ., (i2n—1,12n)) = (0(i1),0(i2)), ..., (0 (i2n—1), 0 (i2n))

So () is in force. More over, since Son acts transitively on the space of matchings,
we have a permutation representation of Sz, on £L(M,,) = f : M,, — R. Match-
ings may be thought of as a product of n disjoint transposition and so as fixed-point
free idempotent mappings of 1,2, ..., 2n to itself, or as the elements of the conju-
gacy class of San with all cycles of length two. If B, is the subgroup of S2, fixing
the matching (1,2)(3,4)...(2n-1,2n), then B, is isomorphic to the hyperocatahe-
dral group of order 2"n!. Matchings may be identified with elements of quotient
Son/By,. The irreducible representation of Sa,, are indexed by partitions p of 2n.
They will be denoted S*. A crucial fact is that the decomposition of £(M,,) is
known:
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Theorem 1. Let M,, = So,,/By,. Let L(M,,) be all real functions on M, con-
sidered as a representation of Son. Then

LM,) =P s

AFn

where the direct sum is over all partitions X of n, 2\ = (2A\1,2\a,...,2)\;) and
S2X is the associated irreducible representation of the symmetric group Say,

Proposition 2. The transition matrix K of (1) and T,, satisfy

2n —1 1
K= T, — 1
2n — 2 < "o2an—1 )
Corollary 3. The transition matrix K of (1) has an eigenvalue 3y for each A =
(A1, A2, ...y Ak) of n, given by

k
1
&2 n(n—l); T IN

The multiplicity of B is determined by p = 2)\:
(2n)!
H(i,j)elu, h(7/7 J)

with the product being over the cells of the shape u, and h(i, j) hook length ; +
pt; — i — j + 1 where yi' is the transposed diagram

mult(\) = )

3 Main result

From the preaparations, we have the main result:

Theorem 4. For the Markove chain K(z,y) of (1) on M., the space of perfect
matchings on 2n points, for any starting state x, if m = %n(log n+c), with c > 0,
then

K" — 7| <ae™ € 5)
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