Random walks on trees and matchings

MATH285K - Spring 2010

Presenter: Ngoc Chi Le

Reference: [1].

1 Introduction

The paper is based on the bijection between the set of phylogenetic tree with l leaves and the set of perfect matchings on 2n points, \mathcal{M}_n , (where n = l - 1). Using such bijection and analization a natural walk on Mn the paper gave sharp rates of convergence for a natural Markov chain on the space of phylogenetic trees. Roughly, the results show that $\frac{1}{2}n \log n$ steps are necessary and suffice to achieve randomess.

2 Background and needed tools

2.1 Phylogenetic trees and random matchings

A phylogenetic tree with I leaves is a rooted binary tree with I labeled leaves. Let G be a graph with vertex set V and edge set E. A perfect matching is a set of disjoint edges containing all vertices. In the paper, we consider the perfect matchings on 2n points, as the way to divide 1, 2, ..., 2n into n couples. Here, we briefly describe the correspondence between matchings and trees. Begin with a tree with l labeled leaves. Label the internal vertices sequentially with l+1, l+2, ..., 2(l-1) chosing at each stage the ancestor which has both children labeled and who has the descendant lowest possible available label. When all nodes are labeled, create a matching on 2n = 2(l-1) vertices by grouping siblings. To go backward, given a perfect matching of 2n points, note that at least one matched pair has both entries from 1, 2, 3, ..., n+1. All such labels are leaves; if there are several leaf-labeled pairs, choose the pair with the smallest label. Give the next available label n + 2 = l + 1 to there parent node. There are then a new set of available label for its parent and so on.

2.2 Marrkov Chain

For matchings in \mathcal{M}_n , a step in the walk is obtained by picking two matched pairs at random, a random entry of each pair and transposing these entries. For general $n \ge 2$ and $x, y \in \mathcal{M}_n$, define:

$$K(x,y) = \begin{cases} \frac{1}{n(n-1)} & \text{if } x \text{ and } y \text{ differ by a transposition} \\ 0 & \text{otherwise} \end{cases}$$
(1)

The Markov chain (1) has the uniform distribution $\pi(x) = 2^n n!/(2n)!$ as unique stationary distribution. Since K is symmetric, and so, reversible. Because of reversibility, K has an orthonormal basis of eigenvectors $f_i(x)$ with

$$Kf_i(x) = \sum K(x, y)f_i(y) = \beta_i f_i(x)$$

Here β_i is the associated eigenvalue and both f_i and β_i are real. We may express the chi-square distance as:

$$||K_x^m - \pi||_2^2 = \sum_y \frac{|K^m(x,y) - \pi(y)|^2}{\pi(y)} = \sum_{i,\beta_i \neq 1} f_i^2(x)\beta_i^{2m}$$
(2)

In (2) $K_x^m(y) = K^m(x, y) = \sum_z K^{m-1}(x, z)K(z, y)$ and a is a universal constant. The result is sharp; if $m = \frac{1}{2}n(\log n + c)$ for c positive, there is x* and positive $\epsilon = \epsilon(c)$ such that

$$\|K_{x*}^m - \pi\| \ge \epsilon \qquad \text{for all } n \tag{3}$$

2.3 Group theory

Let \mathcal{P}_n be the partition of n. Partition are written as $\lambda \vdash n$ with $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r), \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r > 0$ Clearly, S_{2n} , the symmetric group on 2n letters acts transitively on matchings coordinate wise.

$$\sigma((i_1, i_2), (i_3, i_4), \dots, (i_{2n-1}, i_{2n})) = (\sigma(i_1), \sigma(i_2)), \dots, (\sigma(i_{2n-1}), \sigma(i_{2n}))$$

So () is in force. More over, since S_2n acts transitively on the space of matchings, we have a permutation representation of S_{2n} on $\mathcal{L}(\mathcal{M}_n) = f : \mathcal{M}_n \to \mathbb{R}$. Matchings may be thought of as a product of n disjoint transposition and so as fixed-point free idempotent mappings of $1, 2, \ldots, 2n$ to itself, or as the elements of the conjugacy class of S_2n with all cycles of length two. If B_n is the subgroup of S_{2n} fixing the matching $(1, 2)(3, 4) \dots (2n-1, 2n)$, then B_n is isomorphic to the hyperocatahedral group of order $2^n n!$. Matchings may be identified with elements of quotient S_{2n}/B_n . The irreducible representation of S_{2n} are indexed by partitions μ of 2n. They will be denoted S^{μ} . A crucial fact is that the decomposition of $\mathcal{L}(\mathcal{M}_n)$ is known: Random walks on trees and matchings

Theorem 1. Let $\mathcal{M}_n = S_{2n}/B_n$. Let $\mathcal{L}(\mathcal{M}_n)$ be all real functions on \mathcal{M}_n , considered as a representation of S_2n . Then

$$\mathcal{L}(\mathcal{M}_n) = \bigoplus_{\lambda \vdash n} S^{2\lambda}$$

where the direct sum is over all partitions λ of n, $2\lambda = (2\lambda_1, 2\lambda_2, \ldots, 2\lambda_k)$ and $S^{2\lambda}$ is the associated irreducible representation of the symmetric group S_{2n}

Proposition 2. The transition matrix K of (1) and T_n satisfy

$$K = \frac{2n-1}{2n-2} \left(T_n - \frac{1}{2n-1} I \right)$$

Corollary 3. The transition matrix K of (1) has an eigenvalue β_{λ} for each $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ of n, given by

$$\beta_{\lambda} = \frac{1}{n(n-1)} \sum_{j=1}^{k} \lambda_j^2 - j\lambda_j$$

The multiplicity of β_{λ} is determined by $\mu = 2\lambda$:

$$mult(\lambda) = \frac{(2n)!}{\prod_{(i,j)\in\mu} h(i,j)}$$
(4)

with the product being over the cells of the shape μ , and h(i, j) hook length $\mu_i + \mu'_j - i - j + 1$ where μ' is the transposed diagram

3 Main result

From the preaparations, we have the main result:

Theorem 4. For the Markove chain K(x, y) of (1) on \mathcal{M}_n the space of perfect matchings on 2n points, for any starting state x, if $m = \frac{1}{2}n(\log n + c)$, with c > 0, then

$$\|K_x^m - \pi\| \le ae^{-c} \tag{5}$$

References

[1] Persi Diaconis and Susan P. Holmes, Random walks on trees and matchings, *Electronic Journal of Probability*, Vol. 7 (2002) Paper no. 6, pages 1-17