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Principle component analysis is an essential tool for the study of population
genetics. Genetic datasets are typically very large and therefore difficult to study
with classical techniques. In this note we review a new randomized algorithm for
accurate and efficient PCA [2].

1 Low rank approximation of A

For a given data matrix A ∈ Rm×n we seek a rank k approximation matrix B.
With respect to the spectral norm

min
rank(B)=k

||A−B|| = σk+1(A) (1)

where σk+1(A) is the kth singular value of A. This can be seen by forming an
SVD of A and throwing out all components past the kth singular value.

Given an oversampling parameter p the first step in our method is to construct
a matrix Q such that

||A−QQ∗A|| ≈ min
rank(B)=k

||A−B||. (2)

Q orthogonalizes the range of the principle components of A. A minimizing Q
exists for p = 0 however taking p small will allow us to produce a computationally
efficient method.

For intuition consider the case where the rank of A is exactly k. Select k
random vectors ωi and form the products yi = Aωi. The set yi will be linearly
independent and thus span the range ofA. To compute ourQ we need only orthog-
onalize the yi.

Now suppose that A = B + E where B has rank k and form the products yi

again. In this case the yi likely do not span the range of A due to the perturbation
E. However, it turns out that sampling only a few more (eg 12) directions ωi will
very likely capture the full range of A.

We execute the following algorithm for the computation of Q:

• Draw a random matrix Ω ∈ Rn×(k+p).
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• Form Y = AΩ.

• QR decompose Y and discard R.

The main theoretical result is:

E||A−QQ∗A|| ≤
(

1 +
4 ∗
√
k + p

p− 1

√
min(m,n)

)
σk+1(A). (3)

Proof Sketch.
Apply the triangle inequality many times in order to split the error into a part

that involves optimizing over a space of dimension k and a separate high dimen-
sional part.

Let Ω ∈ Rn×(k+12), W ∈ R(k+12)×n and Z ∈ Rk×(k+12)

||A−QQ∗A|| ≤ 2||A−AΩW ||+ 2||AΩ−QZ||||W ||. (4)

we want to choose W and Z to show

||A−QQ∗A|| ≤ Cσk+1(A). (5)

The algorithm forms Q’s columns from singular vectors corresponding to the
k + p greatest singular values of AΩ. This lets us choose Z such that

||A−QQ∗A|| ≤ σk+1(AΩ) ≤ ||Ω||σk+1(A) (6)

where we understand the second inequality by recalling that we are working with
the spectral norm in this note.

The existence of a (k+p)×n matrix W such that ||A−AΩW || ≤ Cσk+1(A)
is tedious and shown in the appendix of [4] using results from [1].�

A few notes about the result:

• A few iterations of the power method in our computation of Y can improve
the accuracy of our method.

• We expect the bound in (3) to involve a factor of σk+1(A) as σk+1(A) is the
theoretical best bound we can find.

• Notice that increasing p greatly improves accuracy.
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2 SVD in reduced subspace.

Now that we have identified a subspace that captures most of the action of A we
cheaply compute an SVD in the reduced space. Form

B = Q∗A (7)

SVD B
B = ÛΣV T (8)

replace
U = QÛ (9)

then
A ≈ UΣV T . (10)

We make the following observations about the method

• This is an “out-of-core” technique requiring only 2 passes over A (one to
form Y , another to formB). WhenA too large to fit in RAM we may loadA
in stages to form the productsAΩ andQ∗A saving only Y andB in memory.

• The major bottleneck of the method is the formation of the products AΩ and
Q∗A. This is readily accelerated on parallel architectures.

• It turns out that replacing Ω with an undersampled DFT matrix provides
similar error bounds. This allows one to asymptotically speed up the com-
putation of AΩ by an exponential factor by using FFT libraries to compute
the product [3].
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