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1. Introduction

We consider the following broadcasting process. The first building block of the
process is an irreducible aperiodic Markov chain (or channel) on a finite alphabet
A = {1, . . . , k}. We will denote by Mi, j the transition probability from i to j by
P[M(i) = j] = Mi, j ; and by λ2(M) the eigenvalue of M which has the second
largest absolute value (λ2(M) may be negative). The second building block is a
d-ary tree T = Td = (Vd, Ed) rooted at ρ. At the root ρ, one of the symbols of
A is chosen according to an initial distribution π = (π1, . . . , πk). We denote this
(random) symbol by σρ. This symbol is then propagated in the tree in the following
way. For each vertex v having as a parent v′, we let σv = Mv′, v(σv′), where the
Mv′, v are independent copies of M . Equivalently, for a vertex v, let v′ be the
parent of v, and let Av be the set of all vertices which are connected to ρ through
paths which do not contain v. Then we have

P[σv = j|(σω)ω∈Av ] = P[σv = j|σv′ ] = Mσv′, j
.

It is known that the reconstruction of T is possible if dλ2
2(M) > 1. Moreover,

in this case it is possible to reconstruct using a majority algorithm which ignores the
location of the data at the boundary of the tree. In this paper we show that, both for
the binary asymmetric channel and for the symmetric channel on many symbols, it
is sometimes possible to reconstruct even when dλ2

2(M) < 1. This result indicates
that, for many (maybe most) tree-indexed Markov chains, the location of the data
on the boundary plays a crucial role in reconstruction problems.

2. Definitions and Background

Let d(, ) denote the graph-metric distance on T , and let Ln = {v ∈ V :
d(ρ, v) = n} be the nth level of the tree. We denote by σLn = (σ(v))v∈Ln the
symbols at the nth level of the tree. We let cLn = (cLn(1), . . . , cLn(k)), where
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cLn(i) = #{v ∈ Ln : σ(v) = i}.

That is, cLn is the count of the nth level. Note that both (σLn)
∞
n=1 and (cLn)

∞
n=1

are Markov chains. We want to know if the data on the boundary gives some
information on the root.

Definition 1. We say that the reconstruction problem is solvable if there exists
i, j ∈ A for which

lim
n→∞

|Pi
n − Pj

n| > 0,

where | | denote the total variance norm and Pl
n denote the conditional distribution

of σLn given that σρ = l.

Definition 2. We say that the reconstruction problem is count-solvable if there
exists i, j ∈ A for which

lim
n→∞

|P(c), i
n − P(c), j

n | > 0,

where | | denote the total variance norm and P(c), l
n denote the conditional distribu-

tion of cLn given that σρ = l.

Definition 3. Let T ′ be a subtree of the tree T which is rooted at ρ. We say that
T ′ is an l-diluted b-regular tree if, for all i, all the vertices of T ′ at level il have
exactly b descendents at level (i+ 1)l.

3. Main Results

Theorem 1. Consider the asymmetric binary chains

M1 =

(
1− δ1 δ1
1− δ2 δ2

)
.

[Note that λ2(M1) = δ2 − δ1]. Suppose that 0 ≤ λ ≤ 1 and that dλ >
1; then there exists a δ > 0 s.t. if λ2(M1) = λ and δ1 < δ, then the
reconstruction problem is solvable for the d-ary tree and the chain M1.

Theorem 2. Consider the symmetric chains on q symbols:

M2 =


1− (q − 1)δ δ . . . δ

δ 1− (q − 1)δ δ . . .
... . . .

. . . ...
δ . . . δ 1− (q − 1)δ

 .
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[Note that λ2(M2) = 1 − qδ]. Let 0 < δ < 1 and take d such that dλ > 1.
Then there exists a Q s.t. if q > Q and λ = 1− qδ, then the reconstruction
problem is solvable for the d-ary tree and the chain M2.

Theorems 1 and 2 are sharp in the following sense.

Proposition 3. Take d an integer s.t. |dλ2(M1)| ≤ 1. Then the recon-
struction problem is unsolvable for the d-ary tree and M1.

Proposition 4. Let λ = 1 − qδ. Suppose that 0 ≤ dλ ≤ 1. Then the
reconstruction problem is unsolvable for the d-ary tree and the chain M2.

Proposition 5. There exists a channel M such that λ2(M) = 0 and such
that the reconstruction problem is solvable for M and all d ≥ 1000.

4. Proof Outline

The proofs of Theorems 1 and 2 and of Propositions 3 and 4 all use
random-cluster arguments. Consider the space {0, 1}Ed , an element of
which is (τ(e))e∈Ed

. By λ−percolation on T we mean the random process
which has the state space {0, 1}Ed and for which P[τ(e) = 1] = λ indepen-
dently for all e ∈ Ed. An edge e with τ(e) = 1 is called an open edge.
More generally, we say that a subtree T ′ = (V ′, E ′) of T is open if all the
edges e ∈ E ′ are open. The following lemmas play a key role in our proof.

Lemma 6. Let Td be the infinite rooted d-ary tree, and let 0 ≤ λ ≤ 1
be a number such that dλ > 1. There exists a positive ϵ = ϵ(d, λ) s.t. for
all b ≥ 1, there exists l ≥ 1 s.t. if one performs percolation with parameter
λ′ ≥ λ on T, then

P[ρ is the root of an open l − diluted b− regular tree] ≥ ϵ(d, λ).

We also need a complementary result for λ close to 1.

Lemma 7. Let Td be the infinite rooted d-ary tree, and take l ≥ 1 and
ϵ > 0. There exists λ < 1 such that, if one performs percolation with
parameter λ′ ≥ λ on T, then

P[ρ is the root of an open l − diluted (dl − 1)− regular tree] ≥ 1− ϵ.
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The proof of Propositions 3 and 4 uses another type of random-cluster
argument. The channels for which we can use this kind of argument are
channels M which have matrices (Mi, j)

k
i, j=1 which satisfy

Mi, j = λNi, j + (1− λ)νj (∗)

for some channel N which has the matrix (Ni, j)
k
i, j=1, a distribution vector

(νj)
k
j=1 and a number 0 ≤ λ ≤ 1.

Proposition 8. Suppose that M has the form (∗). Then the reconstruc-
tion problem for M is unsolvable whenever dλ ≤ 1.

Proposition 9. All binary channels M in Theorem 1 have the form (∗)
with λ = λ2(M). All symmetric channels M in Theorem 2 with λ = 1−qδ ≥
0 have the form (∗) with λ = λ2(M) = 1− qδ.
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