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1 Concentration in the CFN Model

Basic definition. Statistical consistency is a coarse property which does not al-
low to distinguish different inference methods very well. A more quantitative
comparison between methods can be obtained from the following concept. For
simplicity, we restrict ourselves to estimating the tree.

DEF 10.1 (Asymptotic Sample Complexity (ASC)) Fix δ > 0. Let

Ξ = {Ξ1
X , . . .},

be a sequence of i.i.d. samples generated by a CFN model (T ,P). A sequence of
estimators {T̂k}k≥0 of T , where T̂k is based on k samples, has asymptotic sample
complexity (ASC) at confidence level δ (at most) k0 if for all k ≥ k0 the probability
that T̂k = T is at least δ.

Typically, the ASC is expressed as an asymptotic expression of structural parame-
ters of the model such as the number of leaves n, the shortest branch length f , or
the diameter of the tree.

Concentration bound. The law of large numbers itself is not enough to prove
ASC results. Rather we need concentration inequalities such as Chernoff’s bound.
We give a proof for completeness.

THM 10.2 (Chernoff’s bound) Let X be a binomial with parameters n and p.
Then, for all t > 0

P[|X − np| ≥ t] ≤ 2e−t2/(2n).

Proof: Recall the following easy inequality.
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LEM 10.3 (Markov’s inequality) If X ≥ 0 with finite mean then

P[X ≥ t] ≤ E[X]

t
,

for all t > 0.

Proof: Note that

E[X] ≥ E[X1{X ≥ t}] ≥ tP[X ≥ t].

Write X − np as a centered iid sum

X − np =
∑
i≤n

Yi,

in the obvious way. By Markov and independence,

P[X − np ≥ t] = P[exp(h(X − np)) ≥ exp(ht)]

≤ exp(−ht)E[exp(h(X − np))]
= exp(−ht)E[exp(hYn + h

∑
i≤n−1

Yi)]

= exp(−ht)E[exp(hYn)]E[exp(h
∑

i≤n−1

Yi)]

= exp(−ht)E[exp(hY1)]
n.

LEM 10.4 Assume E[Y ] = 0 and |Y | ≤ 1. Then, for all h

E[exp(hY )] ≤ exp(h2/2).

Proof: By convexity

ehy ≤ 1− y
2

e−h +
1 + y

2
eh,

for |y| ≤ 1. By Taylor expansion (check!),

E[exp(hY )] ≤ 1

2
(e−h + eh) ≤ eh2/2.

Choose h = t/n and apply the previous lemma to Y1.
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ASC of Distance Methods. We apply the previous bound to the estimation of
distances. For simplicity, we state the result for binary phylogenetic trees, although
this is not necessary.

THM 10.5 (ASC of Distance Methods) Let

w∗ = min
e
w(e)

and
W∗ = max

a,b
δ(a, b).

Then, the algorithm above recovers the correct tree with probability 1 − o(1) as
n→∞ with

k = O

(
e2W∗

(1− e−w∗/4)2
log n

)
.

Proof: Assume that for all a, b ∈ X

|pab − p̂ab| < ε.

For

max
q
|δ(q)− δ̂(q)| ≤ 2 max

a,b
|δ(a, b)− δ̂(a, b)| < 1

2
min
e
we ≡

1

2
w∗,

to hold for all pairs of leaves, it must be that

1

4
w∗ > − log(1− 2(pab + ε)) + log(1− 2pab)

= − log

(
1− 2(pab + ε)

1− 2pab

)
= − log

(
1− 2ε

1− 2pab

)
,

and similarly for the other direction. Rewriting this equation, it is enough that

ε <
1

2
(1− e−w∗/4)e−W∗ ≡ W∗

≤ 1

2
(1− e−w∗/4)(1− 2pab).

Plugging this expression into Chernoff’s bound with t = W∗k gives a probability
of failure

≤ 2 exp

(
−W

2
∗k

2

)
,
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which will be ≤ 1/n3 (so that we can apply a union bound over all pairs of leaves)
if

k = O

(
1

W2
∗

log n

)
= O

(
e2W∗

(1− e−w∗/4)2
log n

)
.

Yule case. For random trees, one can obtain bounds on the diameter.
Branching processes are commonly used to model species phylogenies. In the

continuous-time Yule process (or pure-birth process), one starts with two species
(representing the two branches emanating from the root). At any given time, each
species generates a new offspring at rate 0 < ν < +∞. We stop the process
when the number of species is exactly n+ 1 (and ignore the n+ 1st species). This
process generates a species phylogeny with n leaves and branch lengths given by
the inter-speciation times in the above process.

Let Zi be the (i− 1)-th inter-speciation time. As a minimum of i independent
exponential distributions with mean 1/ν, Zi is an exponential with mean 1/(iν).
Moreover the Zis are independent. Hence the height of the phylogeny in time
units, that is, the total time until n+ 1 species are present (recall that we ignore the
(n+ 1)-st species) is

Z =
n+1∑
i=2

Zi,

and we have

E[Z] =

n+1∑
i=2

E[Zi] =

n+1∑
i=2

1

iν
= Θ(ν−1 log n),

and

Var[Z] =

n+1∑
i=2

Var[Zi] =

n+1∑
i=2

1

i2ν2
= Θ(ν−2).

By Chebyshev’s inequality,

P[Z ≥ C1 log n] ≤ C2

C3 log2 n
→ 0,

for appropriately chosen Cs not depending on n.

2 Depth v. Diameter

It turns out that Theorem 10.5 is not tight. In particular, the dependence of k in
the weighted diameter W∗ can be replaced by the weighted depth using a more
sophisticated algorithm:
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DEF 10.6 (Weighted Depth) The depth of an edge e is the length (under δ) of the
shortest path between two leaves crossing e. The depth of a tree is the maximum
edge depth.

In general, the depth can be much smaller than the diameter. Assume all branch
lengths are 1 (that is, consider the graphical distance). Then on the caterpillar tree,
the diameter O(n) while the depth is O(1). In fact, under the graphical distance,
the depth is always at most 2 log2 n + 2. Indeed, if the depth of an edge e was
2 log2 +3 then the path to the closest leaf on one side of ewould be at least log2 +1
which would imply that the number of leaves on that side of e would exceed n—a
contradiction.

For details, see e.g. [DMR09].
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