
Notes 16 : Kingman’s coalescent
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References: [Dur08, Chapter 1.2, 4.4].

1 Coalescent
In the previous lecture, we saw that the infinite population size limit of the first
coalescence time of k samples is exponential with mean

(
k
2

)−1
. This justifies the

introduction of Kingman’s n-coalescent which can be thought of as a process on
partitions of {1, . . . , n}—defined backwards in time.

• Let Πn
n = {{1}, {2}, . . . , {n}}, Tn = 0 and k := n.

• Repeat until k = 1:

– Let tk be exponential with mean
(
k
2

)−1
and set Tk−1 = Tk + tk.

– Merge two uniformly random sets in Πn
k to obtain Πn

k−1 and set k :=
k − 1.

Here, the Tk’s are the successive coalescent times and the Πn
k are the states at those

times. See Figure 1.5 in [Dur08] for an illustration.
Note that the height T1 has mean

E[T1] =
n∑
k=2

E[tk] =
n∑
k=2

2

k(k − 1)
= 2

n∑
k=2

(
1

k − 1
− 1

k

)
= 2

(
1− 1

n

)
.

2 Effective population size
As we discussed in the previous lecture, the limiting procedure above is quite
robust and often does not depend on the details of the model. We give a brief
example—without proof—in the case of two-sex models.
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Consider a population with Nm male diploids and Nf female diploids where
Nm and Nf are constant in time and of the same order as N = Nm +Nf . Number
the two gene copies in each individual 1 and 2. Imagine that, at each generation,
the two copies of each individual decide uniformly at random which one inherits
its state from a male. Then the corresponding chromosome picks a father uni-
formly at random from the male population and a uniformly chosen gene copy
from that father. Similarly for the female chromosome.

Consider two gene copies from two different individuals in the population.
Irrespective of the sex of the corresponding individuals, the probability of coales-
cence at the previous generation is(

1

4

1

Nm

+
1

4

1

Nf

)
1

2
≡ 1

2Ne

,

independently of the other generations, where the 1/4 comes from the choice of
the same sex, the 1/Nm comes from the choice of the same parent and the 1/2
comes from the choice of the same gene copy. The quantity Ne is called the
effective population size. Rescaling time by 2Ne and taking a limit N →∞ leads
to an exponential distribution for the coalescence time of 2 copies.

There is one caveat however. If the two chromosomes come from the same
individual, then they cannot coalesce at the previous generation, as one of them
chooses a male parent and the other a female parent. However, the probability of
being in that “almost coalesced” state is of order O(1/N) and one immediately
leaves that state at the previous generation. Therefore, the amount spent on that
problematic state is negligible and the limit is not affected.

One can show that the limit is Kingman’s coalescent.

3 Shape of the coalescent
We begin our study of the coalescent with some simple calculations.

THM 16.1 (Distribution) We have

P[Πn
i = Π] =

i!(n− i)!(i− 1)!

n!(n− 1)!

i∏
k=1

λk!,

where Π has |Π| = i sets, their sizes being λ1, . . . , λi. We denote the first factor
by cn,i and the second one by w(Π).
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Proof: We proceed by induction, the case i = n being trivial. We write Π′ ≺ Π if
Π is obtained from Π′ by merging two sets. To use induction, we condition on the
state at time i,

P[Πn
i−1 = Π |Πn

i = Π′] =
1(
i
2

) .
Then

P[Πn
i−1 = Π] =

2

i(i− 1)

∑
Π′≺Π

P[Πn
i = Π′].

If Π has sets of size λ1, . . . , λi−1, then Π′ ≺ Π has sets of size

λ1, . . . , λ`−1, ν, λ` − ν, . . . , λi−1,

for some 1 ≤ ` ≤ i− 1 and 1 ≤ ν < λ`. Hence,

P[Πn
i−1 = Π] =

2

i(i− 1)

i−1∑
`=1

λ`−1∑
ν=1

cn,iw`,ν

(
λ`
ν

)
1

2

= w(Π)
cn,i

i(i− 1)

i−1∑
`=1

λ`−1∑
ν=1

1

= w(Π)
cn,i

i(i− 1)
(n− (i− 1)),

where
w`,ν = λ1! · · ·λ`−1!ν!(λ` − ν)! · · ·λi−1!.

Note that the factor
(
λ`
ν

)
1
2

gives the number of ways of choosing two subsets from
the merged set where the two subsets are themselves unordered.

A simple calculation concludes the proof.
We immediately obtain the following result on the sizes of the sets which will

be useful later.

THM 16.2 Assume that Πn
i has sets of size λ1, . . . , λi where the sets are ordered

such that the first one contains 1, the second contains the smallest remaining
element, etc. Let π be a permutation on {1, . . . , i} and define µ` = λπ(`), for
` = 1, . . . , i. Then the vector (µ1, . . . , µi) is distributed uniformly over vectors
summing to n.

Proof: By the previous theorem, permuting the sets in Πn
i uniformly, each ar-

rangement has probability

cn,iλ1! · · ·λi!
1

i!
.
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Picking the elements in each set randomly, we obtain the probability of their sizes
as

cn,iλ1! · · ·λi!
1

i!

n!

λ1! · · ·λi!
which is independent of the sizes.

Further reading
The material in this section was taken from Sections 1.2 and 4.4 of the excel-
lent monograph [Dur08]. For more details on the robustness of the coalescent,
see [Wak08].
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