
Notes 18 : Chinese restaurant process

MATH 833 - Fall 2012 Lecturer: Sebastien Roch

References: [Dur08, Chapter 1.3].
Recall Ewens’ sampling formula (ESF).

THM 18.1 (Ewens’ sampling formula) Letting ‖a‖ =
∑n

i=1 iai, in a sample of
size n we have

q(a) = 1{‖a‖ = n} n!

θ(n)

n∏
i=1

(
θ

i

)ai 1

ai!
,

where θ(n) = θ(θ + 1) · · · (θ + n− 1).

1 Proof of ESF
We begin with a proof of the ESF. This is essentially Kingman’s proof (under-
standing ESF was the main motivation for his introduction of the coalescent).
Proof: Let Π be the partition generated by the infinite-alleles model on n sample.
We call each set in Π a cluster. Assume there are k clusters. Looking backwards
in time, to obtain Π it must be that each cluster undergoes a sequence of coales-
cences followed by a single mutation: more precisely, a cluster of size λi goes
through λi − 1 coalescences then a single mutation. Once this happens, we say
that the cluster has merged. Moreover, no coalescence event can occur between
two unmerged clusters—we call such an event invalid.

We now compute the probability that these events occur. The probability that
a coalescence occurs within a cluster with j lineages remaining when the total
number of lineages remaining is i is given by

i− 1

θ + i− 1
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j
2
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i
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) =
j(j − 1)

i(θ + i− 1)
.

Similarly, the probability that a mutation occurs in a cluster with 1 lineage remain-
ing when the total number of lineages reamining is i is given by

θ

θ + i− 1

1

i
=

θ

i(θ + i− 1)
.
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Note that in both expressions, the denominator depends only on i and the numer-
ator depends only on j.

Hence, the probability that a particular sequence of valid events occurs must
be ∏k

i=1 θλi!(λi − 1)!

n!θ(n)
.

The particular sequence of valid events is not important to us so we multiply by
the number of ways of choosing λ1, . . . , λk positions among the n time slots

θk
∏k

i=1 λi!(λi − 1)!

n!θ(n)
× n!

λ1! · · ·λk!
=
θk
∏k

i=1(λi − 1)!

θ(n)
.

(Note that we ignore those events that are valid but irrelevant like the coalescence
between a merged cluster and an unmerged cluster. The properties of exponentials
allow us to do so.)

Since we are looking for the probability of the allele frequencies, we multiply
by the number of ways of choosing the elements in each cluster—not distinguish-
ing between clusters of the same size—to get

q(a) =
θk
∏k

i=1(λi − 1)!

θ(n)
× n!

λ1! · · ·λk!
× 1

a1! · · · an!

=
n!θ
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)
θ(n)a1! · · · an!

=
n!

θ(n)

n∏
i=1

(
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i

)ai 1

ai!
.

2 A better estimator for θ
Implicit in Kingman’s proof of ESF is the following urn process due to Hoppe.

DEF 18.2 (Hoppe’s urn) An urn contains a black ball and a certain number of
balls of other colors. At each time step, a ball is picked at random, the black
having weight θ and all other balls having weight 1. If the black ball is picked, a
ball of a new color is added to the urn (and the black ball is replaced). If a ball of
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another color is chosen, a new ball of the same color is added to the urn (and the
ball picked is returned to the urn). The process starts with a single black ball. We
stop when we have n non-black balls.

From the proof of the ESF given above, the distribution of the frequencies of
the non-black balls is given by Ewens’ formula. (Just look at the process going
backwards in time.)

To illustrate the use of Hoppe’s urn, we consider a different estimator of θ. A
natural quantity which is influenced by the mutation rate is the total number of
alleles Kn in the sample.

THM 18.3 (Watterson’s estimator) We have

E[Kn] ∼ θ log n Var[Kn] ∼ θ log n.

Proof: By Hoppe’s urn,Kn—the number of non-black colors in the urn—is a sum
of independent Bernoulli variables with mean θ

θ+i−1
, i = 1, . . . , n. Therefore,

E[Kn] =
n∑
i=1

θ

θ + i− 1
.

and

Var[Kn] =
n∑
i=1

θ

θ + i− 1

i− 1

θ + i− 1
=

n∑
i=1

θ(i− 1)

(θ + i− 1)2
.

Using the fact that i−1
θ+i−1

→ 1 and the approximation of
∑

i
θ

θ+i−1
by an integral

which scales as log(n+ θ)− log θ, the result follows.
Note that the variance ofKn/ log n is roughly θ/ log n and therefore converges

to 0 as n → ∞. In fact, an appropriate version of the Central Limit Theorem
shows that Kn (standardized) converges in law to a Gaussian.

3 Chinese restaurant process
Although Kn may appear to be a rather naive estimator (not to mention it con-
verges painfully slowly), we will show here that one cannot much better.

We expand Hoppe’s urn by tracking the time at which each ball enters the
urn. It turns out to be useful to represent the state of the system by the cycle
decomposition of a permutation. We start with the empty permutation. At time i:
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• If the black ball is chosen (including at the very first step) a new cycle is
created including only i.

• If a ball of another color is chosen, say with index j, we include i in the
cycle of j to the left of j.

This is called the Chinese restaurant process.

THM 18.4 If the permutation π generated by the chinese restaurant process has
k cycles then its probability is θk

θ(n)
.

Proof: Noting that the process can be reversed in a unique way and using an
argument similar to the proof of the ESF, the result follows. When θ = 1, we
get a uniformly random permutation and Ewens’ formula gives a formula for the
number of permutations with k cycles.

Recall:

DEF 18.5 (Sufficient statistic) If a statistic X is such that the conditional dsitri-
bution of the data given X does not depend on the parameter θ, we say that X is
sufficient.

THM 18.6 Kn is a sufficient statistic for θ.

Proof: Since the probability in Theorem 18.4 depends only on k, we have that

P[Kn = k] =
θk

θ(n)
|Skn|,

where |Skn| is the number of permutations of n elements with k cycles. Using ESF,
we get

P[a |Kn = k] = 1{|a| = k} n!

|Skn|

n∏
j=1

(
1

j

)aj 1

aj!
,

which does not depend on θ.

Further reading
The material in this section was taken from Section 1.3 of the excellent mono-
graph [Dur08].
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