Notes 21 : Recombination

MATH 833 - Fall 2012 Lecturer: Sebastien Roch

References: [Dur08, Chapter 3.1].

1 Recombination

The coalescence processes at two loci are correlated through a process called
recombination which—looking at time going backwards—produces branchings.
Formally the state of the process is described by a vector x = (i, j, k) (where
1 (respectively 7, k) is the number of lineages that “sit on the coalescent tree of
locus a (respectively locus b and both loci)”) and the rates (going backwards are)
to the various states are as follows

(i+1,5+1,k—1) atrater; = pk/2
(i—1,7—1,k+1) atratery =ij

(i,5,k) > q (i = 1,5,k) atrate r3 = ik +i(i — 1)/2 (1)
(i,j —1,k) atrate ry = jk 4+ j(j — 1)/2
[ (i, 5,k — 1) atrate r5 = k(k —1)/2.

See [Dur(08] for an illustration of the process. Letting n, = i+ k, n, = j + k, and
¢ =i+ j + k, the total rate under x is

0l —1)+kp

ﬁx: 9

2 A Recursion for the Covariance

To quantify the correlation between loci a and b, we consider the covariance be-
tween the total tree lengths 7, and 7.
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THM 21.1 (Tree-Length Covariance: Recursion) Let x = (1, j, k) be the ini-
tial state. Let F'(x) be the covariance of the tree lengths 1, and T, started at x. If
X is the state after the first jump. Then

2k(k — 1)
Br(ng — 1)(ny — 1)

Proof: By the conditional covariance formula,

F(z) = E,[F(X)] +

Cov|ry, 1) = E[Cov]Ts, 7, | X]] + Cov|E[r, | X], E[r, | X]],
where the initial state x is implied. Let .J be the time of the first jump, then
Ta = NgJ + T2,

where 7, is the total length of the tree after J, and similarly for b. Since J is
independent of 7/, 7, and X

Mgy

5

Let N, and N, be the number of a and b lineages after the first jump. We need to
compute E[7, | X| — E[r,]. Recall that

E[Cov|a, T | X]] = nonyVar[J] + E[Covr., 7, | X]] = + E.[F(X)].

3
L

1
E[r.] = h(n,) =2 2. 3,
so that
Efr, |X] — Elr,] = (g— ; h<Na>) ~ h(ny). @

Note that, considering all transitions in (1), n,, cannot increase and it decreases at
rate 73 + r5. Hence, by a similar reasoning for b, we get

E[Cov|r,, 7| X]] = E [(g— +h(N,) — h(na)) (% + R(Ny) — h(@)]

_nanb+nar4+7’5<_ 2 )+nbr3+r5<_ 2 )
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Further, taking expectations in (2),

Ng T3+7;5 2
0=— —
6m+ Bw < na_l)’

and similarly for b, so that

MMy n 4rs
B2 Bu(na —1)(np — 1)

This proves the claim. |

E[Cov|r,, 7 | X]] =

3 Solving the Recursion

The recursion in Theorem 21.1 results in linear systems that can be solved induc-
tively in n, and n;. We discuss the case of 2 samples which will be useful in the
next lecture.

THM 21.2 (Covariance: Two-Sample Case) We have

p+ 18

F(0,0,2) =4————
(0,0,2) p?+13p+ 18’

6
F(1,1,1)=4—————
p? 4+ 13p + 18

and

4
F(2,2,0)=4———7——.
p? 4+ 13p + 18

(The factor of 4 comes from the difference between coalescence time and tree
length.)

Proof: Note that F(i,j,k) = 0 for = = (0,0,1), (1,0,1), (1,1,0) (0,1, 1),
(2,1,0), and (1,2,0). Hence, we get the following system of equations,

_ P 4
F(0,0,2)_p+1F(1,1,1)+p+1
_ p/2

F(2,2,0) = §F(1, 1,1).

This system is straighforward to solve. See [Dur08]. [ |
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Further reading

The material in this section was taken from Chapter 3 of the excellent mono-
graph [Dur08].
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