
Notes 24 : Fixation in the diffusion limit

MATH 833 - Fall 2012 Lecturer: Sebastien Roch

References: [Dur08, Chapter 7], [KT81, Chapter 15].

1 Wright-Fisher diffusion model for diploids
We generalize slightly the model we derived in the previous lecture by considering
a diploid population with N individuals. Suppose we have two alleles A and a at
a locus where the genotypes have the following relative fitness (one way to think
about this is that each genotype survives to maturity with the given probability):

AA Aa aa
1− s0 1− s1 1− s2.

Moreover, we have mutations A → a (respectively a → A) with probability µ1

(respectively µ2). Assume the parameters scale with N as

γi = 2Nsi, βi = 2Nµi.

Following [Dur08], we also use the notation δ = γ2 − γ2 and η = 2γ1 − γ0 − γ2.
The infinitesimal drift and variance are enough to characterize the behaviour

of the diffusion limit—except for the boundary conditions which we will discuss
in the next lecture. Denoting the rescaled state by x (frequency ofA), the infinites-
imal drift and variance are given by

µ(x) = [β1(1− x)− β2x] + x(1− x)[δ + ηx], (1)

and
σ2(x) = x(1− x). (2)

The latter comes from the binomial sampling scheme. The first term of (1) re-
flects the mutation pressure and is straightforwardx to interpret. To understand
the second term it is useful to look at examples (where we take β1 = β2 = 0).
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EX 24.1 (Additive selection) Here s0 = 0, s1 = s, s2 = 2s and we let γ = 2Ns.
Then

µ(x) = δx(1− x).

EX 24.2 (Balancing selection) Here s1 = 0. Then

µ(x) = x(1− x) [γ2 − (γ0 + γ2)x] = (γ0 + γ2)x(1− x)

[
γ2

γ0 + γ2
− x
]
.

EX 24.3 (Dominant A) Here s0 = s1 = 0, s2 = s and we let γ = 2Ns. Then

µ(x) = x(1− x)[γ − γx] = γx(1− x)2.

EX 24.4 (Recessive A) This case is symmetric to the previous one. Here s0 = 0,
s1 = s2 = s and γ = 2Ns. Then

µ(x) = γx2(1− x).

See [Dur08, Figure 7.1] for an illustration of the mean behavior in each case.
However, the variance term cannot in general be ignored as it reflects genetic
drift, a key factor in shaping the genetic variation of a population. For instance, a
positively selected allele can be lost due to chance. We now turn to the analysis
of this type of phenomenon.

2 Hitting times
Let l < a < b < r and

T ∗ = min{Ta, Tb},

where Ty the first time y is reached.

Problem Statement. We consider the following two problems. For a < x < b,
we seek to compute

u(x) = P[Tb < Ta |X(0) = x], (3)

and
v(x) = E[T ∗ |X(0) = x]. (4)
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Problem Solution. Under the assumptions above, it can be shown that u and v
are bounded and twice continuously differentiable. Moreover, they satisfy

0 = Lu, u(a) = 0, u(b) = 1, (5)

and
−1 = Lu, v(a) = 0, v(b) = 0, (6)

where the infinitesimal generator is

Lf(x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x). (7)

Heuristic justification. We give a heuristic argument for the first problem. (The
second one is similar.) Fix a < x < b. As h ↓ 0 the probability of reaching a or b
in time h is o(h). Hence

u(x) ≈ Ex[u(X(h))] + o(h)

≈ Ex[u(x+ ∆hX)] + o(h)

≈ Ex
[
u(x) + u′(x)∆hX +

1

2
u′′(x)(∆hX)2 + o(∆hX)2

]
+ o(h)

≈ u(x) + µ(x)u′(x)h+
1

2
σ2(x)u′′(x)h+ o(h).

For a formal proof using martingales, see [Dur96, (3.2) and (4.2) in Chapter 6].

3 Solving the equations
To solve an equation of the form

Lf(x) = C,

it useful to let g = f ′ and multiply both sides by an integrating factor w

Cw(x) = µ(x)g(x)w(x) +
1

2
σ2(x)g′(x)w(x)

=
1

2
σ2(x)

[
2µ(x)

σ2(x)
g(x)w(x) + g′(x)w(x)

]
=

1

2
σ2(x)

d

dx
[g(x)w(x)],
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where we need

w′(x) =
2µ(x)

σ2(x)
w(x),

that is,

w(x) = exp

(∫ x 2µ(y)

σ2(y)
dy

)
.

Then the solution can be found by integrating twice.
From this argument, it is natural to re-write the equations in the following way.

Let

s(x) = exp

(
−
∫ x 2µ(y)

σ2(y)
dy

)
, S(x) =

∫ x

s(y)dy,

and
m(x) =

1

σ2(x)s(x)
, M(x) =

∫ x

m(y)dy.

The functions S andm are called the scale function and speed density respectively.
Then we have

Lf(x) =
1

2

1

m(x)

d

dx

[
1

s(x)

d

dx
f(x)

]
=

1

2

d

dM

[
d

dS
f(x)

]
.

To solve the first problem, integrate twice to obtain

u(x) = C1S(x) + C2.

The boundary conditions give

u(x) =
S(x)− S(a)

S(b)− S(a)
=
S[a, x]

S[a, b]
.

Similarly, the solution of the second problem is

v(x) =

∫ b

a

G(x, y)dy,

where

G(x, y) =

{
2S[a,x]S[y,b]

S[a,b]
m(y), a ≤ x ≤ y ≤ b,

2S[a,y]S[x,b]
S[a,b]

m(y), a ≤ y ≤ x ≤ b,

is the Green function.
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4 Applications to the Wright-Fisher diffusion
EX 24.5 (No mutation/selection.) Since µ(x) = 0, we have

s(x) = C1, S(x) = C1x+ C2, m(x) =
1

x(1− x)C1

,

so that

G(x, y) =

{
2x
y
, 0 < x < y < 1,

2(1−x)
(1−y) , 0 < y < x < 1,

and

v(x) = 2(1− x)

∫ x

0

1

1− y
dy + 2x

∫ 1

x

1

y
dy

= −2[(1− x) log(1− x) + x log x].

EX 24.6 (Additive selection) Consider the case with additive selection and no
mutation. Fix 0 < a < x < b < 1. Then

s(x) = exp

(
−
∫ x 2δy(1− y)

y(1− y)
dy

)
= C1e

−2δx,

and
S(x) =

∫ x

C1e
−2δydy = C1e

−2δx + C2.

Hence

u(x) =
e−2δx − e2δa

e−2δb − e−2δa
.

Taking limits a ↓ 0 and b ↑ 1, we have

Px[T1 < T0] =
1− e−2δx

1− e−2δ
≈ 2s,

where the last expression uses x = 1
2N

(for a new mutation) and δ large enough.
In comparison, recall that a neutral mutation fixates with probability 1/2N .

EX 24.7 (One-way mutation) Assume β2 = 0, β1 = β and that there is no se-
lection. Fix 0 < a < x < b < 1. Then

s(x) = exp

(∫ x 2βy

y(1− y)
dy

)
=

C1

(1− x)2β
,
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and
S(x) =

∫ x C1

(1− y)2β
dy = C1

1

(1− x)2β−1
+ C2.

Hence

u(x) =
(1− x)−2β+1 − (1− a)−2β+1

(1− b)−2β+1 − (1− a)−2β+1
.

Taking limits a ↓ 0, we have

Px[Tb < T0] =
(1− x)−2β+1 − 1

(1− b)−2β+1 − 1
.

So if 2β ≥ 1, this probability goes to 0 as b → 1. In other words, the mutation
pressure is strong enough that the 1 boundary cannot be attained. For 2β < 1,
the limit is positive.

Further reading
The material in this section was taken from Chapter 15 of [KT81] and Chapter 7
of [Dur08].
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