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1 Beyond Perfect Phylogenies
Viewing (full, i.e., defined on all of X) binary characters as X-splits, the Splits-
Equivalence Theorem and its proof via the Tree Popping procedure provide an
algorithmic solution to the problem of checking whether a collection of binary
characters are compatible and, if so, of constructing a minimal X-tree on which
they are convex. (For a discussion of the more general non-binary, non-full prob-
lem, see [SS03, Chapters 4, 6].)

However, typical data may not be compatible and a more flexible approach is
needed.

DEF 3.1 (Parsimony Score) Let C be a character state space with |C| ≥ 2, let
χ be a (full) character on X and let T = (T, φ) be an X-tree with T = (V,E).
Let χ̄ be an extension of χ to V . The changing number ch(χ̄) is

ch(χ̄) = |{{u, v} ∈ E} : χ̄(u) 6= χ̄(v)|.

The parsimony score `(χ, T ) of χ on T is the minimum value of ch(χ̄) over all
extensions of χ on T . For a collection C = {χ1, . . . , χk} of characters, the parsi-
mony score of C on T is

`(C, T ) =
k∑
i=1

`(χi, T ).

A maximum parsimony tree T ∗ for C is an X-tree which minimizes `(C, T ) over
all X-trees. The corresponding parsimony score is denoted by `(C). A natural
generalization of the parsimony score is obtained by considering a metric δ on C
and replacing ch(χ̄) with ∑

e={u,v}∈E

δ(χ̄(u), χ̄(v)).
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We then use the notation `δ.

Given a character χ on X , an X-tree T and a metric δ on C, one can compute
the parsimony score `δ(χ, T ) using a technique known as dynamic programming.
Choose an arbitrary root ρ on T . If v = φ(x) for some x ∈ X , for each α ∈ C let

l(v, α) =

{
0, if χ(x) = α,
+∞, otherwise.

(By convention, we assume that the parsimony score is +∞ if two different states
are assigned to the same node of T .) For all v /∈ φ(X), let v1, . . . , vm be the
children of v (i.e., the immediate descendants of v in the partial order defined
under the above rooting of T ) and for each α ∈ C define

l(v, α) =
m∑
i=1

min
β∈C
{δ(α, β) + l(vi, β)}.

Then, it is straighforward to check by induction that

`δ(χ, T ) = min
α∈C

l(ρ, α),

which can be computed recursively from the leaves up to the root. For a collection
of characters C, one can compute `δ(C, T ) by computing the parsimony scores
of each character separately. Computing `δ(C, T ) is known as the Fixed Tree
Problem.

As it turns out, computing `δ(C) is much harder and, as we now explain, no
efficient procedure is likely to exist for it.

2 Computational Complexity: A Brief Overview
We will use the notation g(n) = O(f(n)) to indicate that there is K > 0 such that
g(n) ≤ Kf(n) for all n ≥ 1. The following definitions are intentionally informal.
For more details, see [Pap94].

In a search problem, we are given an instance I and we are asked to find a
solution S, that is, an object that meets certain requirements (or indicate that no
such solution exists). For example, in the SAT problem, we are given a formula f
over a Boolean vector x = (x1, . . . , xn) and we are asked to find an assignment
for x such that f(x) is TRUE—if such an assignment exists.
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An algorithm A for a search problem is said to be efficient if the number of
elementary operations it performs on any instance I is bounded by a polynomial
in the size of the input, that is, there is a constant K > 0 such that the running
time of A on an input of size n is O(nK).

EX 3.2 (Fixed Tree Problem: Dynamic Programming) Consider again the dy-
namic programming algorithm for solving the Fixed Tree Problem. For each ver-
tex and each character state, we must perform a calculation which takesO(m|C|)
wherem is the number of children of that particular vertex. Summing over all ver-
tices and character states, we get a running time of O(|V |× |C|2). The input here
is a character, a tree and a metric, the size of which isO(|X|+|V |+|C|2). Hence,
the dynamic programming procedure is efficient.

EX 3.3 (Maximum Parsimony: Exhaustive Search) Suppose we are given a col-
lection of characters C = {χ1, . . . , χk} on X and we seek to compute `(2)δ (C) for
a metric δ, where `(2)δ indicates the maximum parsimony score restricted to bi-
nary phylogenetic trees on X . The input size is O(k|X| + |C|2). If we perform
an exhaustive search over all binary phylogenetic trees and use dynamic pro-
gramming on each of them to compute its parsimony score, the running time is
O(b(|X|)× |V | × |C|2), which is not polynomial in the size of the input.

EXER 3.4 (Tree Popping) Show that the Tree Popping algorithm is efficient. What
is its running time?

The class of all search problems for which there exists an efficient algorithm
is called P. Another important class of search problems is NP, which is defined as
those problems for which a solution can be verified efficiently. For example, SAT

is in NP as, given a solution x, it is easy to check whether f(x) is TRUE. (The
standard definition involves decision problems which we will not discuss here.)
An important conjecture is that P6=NP, that is, there exist problems in NP for
which there is no efficient algorithm. In particular, it is possible a sub-class of NP
consisting of the “hardest” problems within NP in the sense that the existence of
an efficient algorithm for any such problem would lead to an efficient algorithm
for any problem in NP. Such problems are called NP-complete and require the
notion of a reduction to be defined. A reduction from a search problem A to a
search problem B is:

An efficient algorithm f that transforms any instance I of A into an
instance f(I) of B, together with another efficient algorithm h that
maps any solution S of f(I) back into a solution h(S) of I.
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See [DPV06] for several examples of reductions. Then, the class of NP-complete
problems is defined as follows:

A search problem is NP-complete if all other search problems in NP
reduce to it.

It is well-known that SAT is NP-complete.

3 Maximum Parsimony is NP-complete
A natural way to transform an minimization problem such as Maximum Parsimony
into a search problem is to add to the input a threshold g and ask for a solution
with objective function below g. Then, the following was shown by Graham and
Foulds:

THM 3.5 (Complexity of Maximum Parsimony) The search problem correspond-
ing to Maximum Parsimony is NP-complete.

In other words, it is unlikely that an efficient algorithm exists for Maximum Par-
simony.

Further reading
The definitions and results discussed here were taken from Chapter 5 of [SS03]
and Chapter 8 of [DPV06]. The rigorous theory of computational complexity
is described at length in [Pap94]. The proof that Maximum Parsimony is NP-
complete can be found in [GF82].
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