
Notes 8 : Markov Models on Trees

MATH 833 - Fall 2012 Lecturer: Sebastien Roch

References: [SS03, Chapter 8].

1 Markov Chain on a Tree

We describe a standard model of nucleotide substitution. LetC be a finite character
state space, e.g., C = {A,G,C,T}. Let Tn be the set of rooted phylogenetic trees
on X = [n] and MC be the set of all transition matrices on C, i.e., |C| × |C| non-
negative matrices whose rows sum to 1. The set of probability distributions on C
is denoted by ∆C .

DEF 8.1 (Markov Chain on a Tree (MCT)) Let T = (T, φ) ∈ Tn with T =
(V,E) rooted at ρ, P = {P e}e∈E ∈ME

C , and µρ ∈ ∆C . A Markov chain on a tree
(T ,P, µρ) is the following stochastic process ΞV = {Ξv}v∈V :

• Pick a state Ξρ for ρ according to µρ.

• Moving away from the root toward the leaves, apply to each edge e =
{u, v} ∈ E with u ≤T v the transition matrix P e independently from ev-
erything else.

We denote by µV the distribution on V so obtained.

For ξV = {ξv}v∈V ∈ CV , the distribution µV can be written explicitly as

µV (ξV ) = µρ(ξρ)
∏

e={u,v}∈E,u≤T v

P eξu,ξv

= P[Ξρ = ξρ]
∏

e={u,v}∈E,u≤T v

P[Ξv = ξv |Ξu = ξu], (1)

where the second line follows from the construction of the process. For W ⊆ V ,
ξW = {ξw}w∈W ∈ CW and W c = V \W , we let the marginal µW at W be

µW (ξW ) =
∑

ξWc∈CWc

µV ((ξW , ξW c)).

With a slight abuse of notation, for v ∈ V and a, b ∈ X we let µv = µ{v},
µa,b = µ{φ(a),φ(b)}, µa,b,c = µ{φ(a),φ(b),φ(c)}, and µX = µφ(X).
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EX 8.2 (GTR Model) A special case of the previous model that commonly arises
in biology is the General Time-Reversible (GTR) model. Let π be a distribution on
C satisfying π(α) > 0 for all α ∈ C. The |C| × |C| matrix Q is a rate matrix if
Qαβ > 0 for all α 6= β and

∑
β∈C Qαβ = 0, for all α ∈ C. We assume further that

Q is normalized by requiring that the trace satisfies tr(Q) =
∑

α∈C Qαα = −1.
The rate matrix Q is reversible with respect to π if παQαβ = πβQβα, for all
α, β ∈ C. Fix π and Q as above. Assume that in addition to T we are given
an positive edge weight function τ : E → R++. Define the MCT by µρ = π
and P e = eτ(e)Q for all e ∈ E. (This corresponds to a continuous-time Markov
subsititution process with rate matrix Q running for time τ(e) along edge e.)

MCTs satisfy a natural generalization of the Markov property of discrete-time
Markov processes. For W,Z ⊆ V , we denote by µW |Z the conditional distribution
of ΞW given ΞZ .

THM 8.3 (Markov Property) Fix u ∈ V̊ and v, a child of u, i.e., u ≤T v and
{u, v} ∈ E. For any W,Z ⊆ V \{v} satisfying

∀w ∈W, v ≤T w and ∀z ∈ Z, v �T z.

Then,
µW |Z∪{u}(ξW |ξZ∪{u}) = µW |{u}(ξW |ξu),

for all ξV ∈ CV . In other words, ΞW and ΞZ are conditionally independent given
Ξu.

Proof: Clear from the construction.
The main statistical problem we are interested in is the following. We will

see below that reconstructing the root of the model is not in general possible. We
denote by T −ρ the phylogenetic tree T without its root.

DEF 8.4 (Reconstruction Problem) Let Ξ = {Ξ1
X , . . . ,Ξ

k
X} be i.i.d. samples

from an MCT (T ,P). Given Ξ, the tree reconstruction problem (TRP) consists
in finding a phylogenetic X-tree T̂ such that T̂ = T −ρ. Fix ε > 0. Given Ξ, the
full reconstruction problem (FRP) consists in finding an MCT (T̂ , P̂, µ̂ρ̂) such that
the corresponding distribution µ̂X is satisfies

‖µX − µ̂X‖1 ≡
∑

ξX∈CX

|µX(ξX)− µ̂X(ξX)| ≤ ε.
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2 Issues with Identifiability

For the reconstruction to be well-posed, it must be that the model is identifiable.

DEF 8.5 (Identifiability) Let Λ = {λθ}θ∈Θ be a family of distributions parametrized
by θ ∈ Θ. We say that Λ is identifiable if: νθ ∼ νθ′ if and only if θ = θ′.

We will show below that the tree reconstruction problem is identifiable under the
following conditions:

µρ > 0,

and
∀e ∈ E, detP e 6= 0,±1.

We denote by Θn the family of MCT on X = [n] satisfying the conditions above.

Re-rooting. We begin by explaining why we restrict ourselves to reconstructing
unrooted trees.

THM 8.6 (Re-rooting an MCT) Let (T ,P, µρ) ∈ Θn with T = (T, φ) and T =
(V,E) rooted at ρ. Then for any u ∈ V̊ we can re-root the MCT at u without
changing the distribution of the process.

Proof: It suffices to show that the model can be re-rooted at a neighbour u of ρ.
Let T̄ be the tree T re-rooted at u. Let e = {ρ, u} and define

P̄ e = U−1
u (P e)tUρ,

where Uv is the |C|× |C| diagonal matrix with diagonal µv. Note that the assump-
tions in Θn imply that µu > 0. Indeed, since µu = µρP

e (interpreting µv as a row
vector) and µρ > 0, a zero component in µu would imply the existence of a zero
column in P e in which case we would have detP e = 0—a contradiction.

Let (T̄ , P̄, µ̄ρ̄) be the MCT with T̄ = (T̄ , φ̄) and T̄ = T rooted at ρ̄ = u, P̄
being the same as P except for the matrix along e which is now P̄ e, and µ̄ρ̄ = µu.
Let µ̄X be the corresponding distribution. We claim that µX ∼ µ̄X . Note that by
Bayes’ rule, for α, β ∈ C,

P̄ eα,β = P[Ξρ = β |Ξu = α],

where ΞV ∼ (T ,P, µρ). The result then follows from (1).
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Determinantal conditions. We show through an example that the determinantal
conditions above are natural.

EX 8.7 Fix C = {0, 1} and X = {a, b, c, d}. Let q1 = ab|cd and q2 = ac|bd
be two quartet trees on X . Assign to each edge of q1 and q2 the same transition
matrix P . Denote by µ1 and µ2 the corresponding distributions. We consider two
cases:

• Suppose detP = 0. Then, it must be that

P =

(
p 1− p
p 1− p

)
,

for some 0 < p < 1. But then the endpoints of any edge are independent.
(Notice that, in general, this is not the case when |C| > 2.) In particular, the
states at the leaves are independent and µ1 ∼ µ2. Therefore, the model is
not identifiable in that case.

• Suppose P is the identity matrix, in which case detP = 1. Then all states
are equal and, again, µ1 ∼ µ2.

3 Log-Det Distance

Our main result is the following.

THM 8.8 (Tree Identifiability) Let (T ,P, µρ) ∈ Θn with corresponding distri-
bution µV . Then T −ρ can be obtained from µX . In fact, pairwise marginals
{µa,b}a,b∈X suffice to derive T −ρ.

Proof: The proof relies on the Uniqueness of the Tree Metric Representation
through the following metric:

DEF 8.9 (Logdet Distance) For a, b ∈ X , let P ab be defined as follows

∀α, β ∈ C, P abα,β = P[Ξφ(b) = β |Ξφ(a) = α].

The logdet distance between a and b is the dissimilarity map

δ(a, b) = −1

2
log det[P abP ba].
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We return to the proof. We claim that δ is a tree metric on T with edge weights

we = −1

2
log det[P eP̄ e] > 0,

where P̄ e is defined as above. Let u be the most recent common ancestor of a and
b under ≤T . Let e′1, . . . , e

′
m′ (resp. e1, . . . , em) be the path between u and a (resp.

b). Then re-rooting at a and b respectively we get

P ab = P̄ e
′
m′ · · · P̄ e′1P e1 · · ·P em ,

and
P ba = P̄ em · · · P̄ e1P e′1 · · ·P e

′
m′ .

The result then follows from the multiplicativity of the determinant.

EX 8.10 (GTR case) Let π and Q as in the example above. Then

we = −1

2
log det[P eP̄ e]

= −1

2
log det[eτ(e)Qeτ(e)Q]

= −1

2
log
[
det[eτ(e)Q]2

]
= − log[eτ(e)tr(Q)]

= τ(e),

where we used reversibility on the second line, properties of the trace of exponen-
tials on the fourth line, and the normalization of Q on the fifth line. As a result,

δ(a, b) = −1

2
log det[P abP ba] =

∑
e∈Path(a,b)

τ(e).

4 Chang’s Eigenvector Decomposition

We showed that the tree structure can be deduced from pairwise distributions at the
leaves. Interestingly, this is not the case for transition matrices. For an example,
see [Cha96]. Instead, one must use three-way distributions. To avoid the possi-
bility of “relabeling” the states at interior vertices, we also require the following
assumption.
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DEF 8.11 (Reconstructibility from Rows) A class of transition matrices M is
reconstructible by rows if for each P ∈ M and each permutation matrix Π 6= I
(i.e., a stochastic matrix with exactly one 1 in each row and column) we have
ΠP /∈M.

For instance, matrices such that the diagonal is striclty largest in each column is
reconstructible by rows.

THM 8.12 (Full Identifiability) Let Θ∗n be a subclass of Θn wehere P = {P e}
andP = {P̄ e} are in a classM reconstructible by rows. Let (T ,P, µρ) ∈ Θ∗n with
corresponding distribution µV . Then up to the placement of the root (T ,P, µρ)
can be derived from µX . In fact, three-way marginals {µa,b,c}a,b,c∈X suffice for
this purpose.

Proof: From the previous theorem, we can derive the unrooted tree structure. Be-
cause the the transition matrix on a path is the product of the transition matrices on
the corresponding edges, it can be shown that it suffices to recover the transition
matrices for the case n = 3. See [Cha96] for the full details.

Let T be a tree on three leaves {a, b, c} rooted at the interior vertex m. Denote
by ΞV the state vector. By abuse of notation, we denote Ξx = Ξφ(x) for x ∈
X . Chang’s clever solution to the identifiability problem relies on the following
calculation [Cha96]. Fix γ ∈ C. Note that

P[Ξc = γ,Ξb = j |Ξa = i] =
∑
k∈C

P[Ξm = k,Ξc = γ,Ξb = j |Ξa = i]

=
∑
k∈C

P[Ξm = k |Ξa = i]

×P[Ξc = γ |Ξm = k,Ξa = i]

×P[Ξb = j |Ξc = γ,Ξm = k,Ξa = i]

=
∑
k∈C

P[Ξm = k |Ξa = i]

×P[Ξc = γ |Ξm = k]

×P[Ξb = j |Ξm = k].

Writing P ab,γ for the matrix with elements P[Ξc = γ,Ξb = j |Ξa = i], we obtain
in matrix form

P ab,γ = P amDiag(Pmc·γ )Pmb,

or, since (P ab)−1 = (Pmb)−1(P am)−1,

(P ab)−1P ab,γ = (Pmb)−1Diag(Pmc·γ )Pmb.

Notice that:
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• The L.H.S. depends only on µX .

• The R.H.S. is an eigenvector decomposition.

We want to extract Pmb from the decomposition above. There are two issues:

1. If the entries of Pmc·γ are not distinct, the eigenvector decomposition is not
unique.

2. The eigenvectors are not ordered.

The second point is taken care of by the reconstructibility from rows assumption.
The solution to the first issue is to “force” the entries to be distinct. For instance,
pick a random vector (Gγ)γ∈C where each entry is an independentN(0, 1). Define

P̃ ab,G =
∑
γ∈C

P ab,γGγ ,

and
P̃mc· =

∑
γ∈C

Pmc·γ Gγ .

Then, with probability 1, the entries of P̃mc· are distinct and

(P ab)−1P̃ ab,G = (Pmb)−1Diag(P̃mc· )Pmb.

Further reading

The definitions and results discussed here were taken from Chapter 8 of [SS03].
Much more on the subject can be found in that excellent monograph. See also
[SS03] for the relevant bibliographic references. The identifiability proofs are
from [Ste94, Cha96].
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