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One question that arises when analyzing a genetic dataset is whether or not
the samples are drawn from a homogeneous population. If not, then identi-
fying the structure inherent in the data is important. Principal component
analysis (PCA or eigenanalysis) is a standard tool in genetics, traditionally
applied to data at a population level. This paper looks at applying eigen-
analysis to individuals to investigate possible structure in datasets; the main
technique developed is a test for whether eigenvectors from the analysis re-
flect real structure in the data or are merely due to noise. In addition, the
authors find a calculable threshold for population size above which detec-
tion of structure is easy, enabling decisions on how much data is required
to find population structure for a given level of genetic divergence. We will
only discuss the eigenanalysis statistics, and not the construction of the
threshold.

We assume that we have data on n biallelic markers from m individuals, and
construct matrix C such that Cij is the number of variant alleles for marker
j, individual i. For example, if each individual has two chromosomes, then
Cij ∈ {0, 1, 2}. Let M be the normalized version of C that corrects for ge-
netic drift and ensures that each data column has the same variance. Then
we compute an eigenvector decomposition of the m×m matrix X = 1

nMMT ,
which is the sample covariance of the columns of M . Eigenvectors corre-
sponding to “large” eigenvalues indicate nonrandom population structure;
the question, of course, is determining what “large” means.

If M has m < n with each entry an independent standard normal random
variable, and we order the eigenvalues of X so that λ1 > λ2 > . . . > λm,
then Johnstone [1] shows that with suitable normalization and for large m
and n, the largest eigenvalue λ1 is well approximated by the Tracy-Widom
distribution.

For genetic applications it cannot be assumed that the markers are unlinked
and independent. Nonindependence of the columns will reduce the effective
sample size; the authors give a recommended moments estimator n′ to use
instead of n to mitigate the effect of nonindependence.

We give an overview of part of the main theorem of the paper, which inves-
tigates the eigenvalues of the theoretical covariance matrix of the counts of
the variant allele, in the case where we are sampling a marker from samples
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belonging to K populations. We assume the frequency of the allele in pop-
ulation i is Pi, that sample j belongs to population i = i(j), and that the
sample size for population i is M(i). We let the covariance of the population
frequency vector be p = (p1,p2, . . . ,pk) and assume that there is a hidden
allele frequency P with diffuse distribution across the unit interval. Condi-
tional on P we assume that p has mean P (1, 1 . . . , 1) and covariance matrix
P (1− P )B where B is independent of P . For small population divergence,
we can take the diagonal entry of Bii as the divergence between P and pi.
Let τi = Bii and assume that all the τi are of the order of τ , which is small.
Conditional on p, the Cj are independent, and Cj has mean p and variance
2p(1− p) where p = pi(j).

Theorem: With the above assumptions, let V ∗ be the covariance matrix
of C∗, which is C normalized to have 0 mean. Let Ṽ = V ∗

2P (1−P ) . Then

conditional on the root frequency P , Ṽ has for each k (1 ≤ k ≤ K), M(k)−1
eigenvalues equal to 1− τk.

Sketch of proof:
Let V be the covariance of the matrix of counts C, which can be viewed as
a linear operator. The covariance structure depends only on the population
labels of the samples, so it follows that the vector space of column vectors of
length M has an orthogonal decomposition into subspaces invariant under
V consisting of:

1. AK-dimensional subspace F of vectors whose coordinates are constant
within a population.

2. Subspaces Sk (1 ≤ k ≤ K) whose vectors are zero on samples not be-
longing to population i, and have coordinate sum 0, so are orthogonal
to F .

It follows that V has K eigenvectors in F , and for each k, M(k)− 1 eigen-
vectors in Sk, each of which have the same eigenvalue λk. Conditional on
p, V acts on Sk as 2pk(1 − pk)I, where I is the identity matrix. Then
λk = E(2pk(1− pk)|P ). Since E(p2k|P ) = P 2 + P (1− P )τk, the eigenvalues
corresponding to the eigenvectors of Sk are λk = 2P (1−P )(1− τk). V ∗ and
V act identically on Sk, so we’re done.
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