
Chapter 2

Moments and tails

Moments capture useful information about the tail of a random variable. In this
chapter we recall a few inequalities quantifying this intuition. Although they are
often straigthforward to derive, such inequalities are surprisingly powerful. We
illustrate their use on a range of applications. In particular we discuss three of
the most fundamental tools in discrete probability: the first moment method, the
second moment method, and the Chernoff-Cramér method.

As a quick reminder, let X be a random variable with E|X|k < +1 for k 2 N.
Recall that the quantities E[Xk

] and E[(X � EX)

k
] are called respectively the

k-th moment and k-th central moment of X . The first moment and the second moments
central moment are of course the mean and variance, the square root of which is
the standard deviation. A random variable is said to be centered if its mean is 0.

The moment-generating function of X is the function moment-
generating
function

MX(s) = E
⇥

esX
⇤

,

defined for all s 2 R where it is finite, which includes at least s = 0. If MX(s) is
defined on (�s

0

, s
0

) for some s
0

> 0 then X has finite moments of all orders and
the following expansion holds

MX(s) =
X

k�0

sk

k!
E[Xk

], |s| < s
0

.

We refer to a probability of the form P[X � x] as an upper tail (or right tail)
probability. Typically x is greater than the mean or median of X . Similarly we

tail probabilities
refer to P[X  x] as a lower tail (or left tail) probability. Our general goal in
this chapter is to bound tail probabilities using moments and moment-generating
functions.
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2.1 First moment method

We begin with bounds based on the first moment. First recall that the expectation
of a random variable has an elementary, yet very handy property: linearity. If
random variables X

1

, . . . , Xn defined on a joint probability space have finite first
moments, without any further assumption,

E[X
1

+ · · ·+Xn] = E[X
1

] + · · ·+ E[Xn]. (2.1)

In particular linearity holds whether or not the Xis are independent.

2.1.1 The probabilistic method

We first illustrate the usefulness of (2.1) on a key technique in probabilistic com-
binatorics, the probabilistic method. The idea behind this technique is that one can
establish the existence of an object—say a graph—satisfying a certain property—
say being 3-colorable—without having to construct one explicitly. One instead
argues that a randomly chosen object exhibits the given property with positive
probability. This is easier to understand on an example.

Example 2.1 (Balancing vectors). Let v
1

, . . . ,vn be arbitrary unit vectors in Rn.
How small can we make the norm of the combination

x
1

v

1

+ · · ·+ xnvn

by appropriately choosing x
1

, . . . , xn 2 {�1,+1}? We claim that it can be as
small as

p
n, for any collection of vis. At first sight, this may appear to be a

complicated geometry problem. But the proof is trivial once one thinks of choosing
the xis at random. Let X

1

, . . . , Xn be independent random variables uniformly
distributed in {�1,+1}. Then

EkX
1

v

1

+ · · ·+Xnvnk2 = E

2

4

X

i,j

XiXjvi · vj
3

5

=

X

i,j

E[XiXjvi · vj ] (2.2)

=

X

i,j

vi · vjE[XiXj ]

=

X

i

kvik2

= n,
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where, of course, we used the linearity of expectation on (2.2). But note that a
discrete random variable Z = kX

1

v

1

+ · · · +Xnvnk2 with expectation EZ = n
must take a value  n with positive probability. In other words, there must be
choice of Xis such that Z  n. That proves the claim. J

Here is a slightly more subtle example of the probabilistic method, where one
has to modify the original random choice.

Example 2.2 (Independent sets). Let G = (V,E) be a d-regular graph with n
vertices and m = nd/2 edges, where d � 1. Our goal is derive a lower bound on
the size ↵(G) of the largest independent set in G. Again, at first sight, this may
seem like a rather complicated graph theory problem. But an appropriate random
choice gives a non-trivial bound. Specifically, we claim that ↵(G) � n/2d.

The proof proceeds in two steps:

1. We first prove the existence of a subset S of vertices with relatively few
edges.

2. We remove vertices from S to obtain an independent set.

Let 0 < p < 1, to be chosen below. To form the set S, pick each vertex in V
independently with probability p. Letting X be the number of vertices in S, we
have by the linearity of expectation that

EX = E
"

X

v2V
v2S

#

= np,

where we used that E[ v2S ] = p. Letting Y be the number of edges between
vertices in S, we have by the linearity of expectation that

EY = E

2

4

X

{i,j}2E
i2S j2S

3

5

=

nd

2

p2,

where we also used that E[ i2S j2S ] = p2 by independence. Hence, subtracting,

E[X � Y ] = np� nd

2

p2,

which, as a function of p, is maximized at p = 1/d where it takes the value n/2d.
As a result, there must exist a set S of vertices in G such that

|S|� |{{i, j} 2 E : i, j 2 S}| � n/2d. (2.3)
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For each edge e connecting two vertices in S, remove one of the end-vertices of e.
Then, by (2.3) the resulting subset of vertices has at least n/2d vertices, with no
edge between them. This proves the claim.

Note that a graph G made of n/(d + 1) cliques of size d + 1 (with no edge
between the cliques) has ↵(G) = n/(d+ 1), showing that our bound is tight up to
a constant. This is known as a Turán graph. J
Remark 2.3. The previous result can be strengthened to

↵(G) �
X

v2V

1

d
v

+ 1

,

for a general graph G = (V,E), where d
v

is the degree of v. This bound is achieved for
Turán graphs. See, e.g., [AS11, The probabilistic lens: Turán’s theorem].

The previous example also illustrates the important indicator trick, i.e., writing
a random variable as a sum of indicators, which is often used in combination with
the linearity of expectation.

2.1.2 Markov’s inequality

Our first bound on the tail of a random variable is Markov’s inequality, which says:
the heavier the tail, the larger the expectation. This simple inequality is in fact a
key ingredient in more sophisticated tail bounds.

Theorem 2.4 (Markov’s inequality). Let X � 0 be a non-negative random vari-
able. Then, for all b > 0,

P[X � b]  EX
b

. (2.4)

Proof.
EX � E[X X�b] � bE[ X�b] = bP[X � b].

See Figure 2.1.2.

Note that this inequality is non-trivial only when b > EX . The following corol-
lary of Markov’s inequality is sometimes referred to as the first moment method.

Corollary 2.5 (First moment method). If X is a non-negative, integer-valued ran-
dom variable, then

P[X > 0]  EX. (2.5)

Proof. Take b = 1 in Markov’s inequality.

In particular, when X is a sum of indicators, the first moment method reduces
to Boole’s inequality or union bound.
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Figure 2.1: Proof of Markov’s inequality: taking expectations of the two functions
depicted above yields the inequality.

Corollary 2.6 (Union bound). Let Bm = A
1

[ · · · [ Am, where A
1

, . . . , Am is a
collection of events. Then, letting

µm :=

X

i

P[Ai],

we have
P[Bm]  µm.

In particular, if µm ! 0 then P[Bm] ! 0.

Proof. Take X =

P

i Ai in the first moment method.

An important generalization of the union bound is given in Exercise 2.1. Next
we give three examples of applications of the first moment method.

2.1.3 . Random permutations: longest increasing subsequence

In our first application of the first moment method, we bound the expected length of
a longest increasing subsequence in a random permutation. Let �n be a uniformly
random permutation of [n] := {1, . . . , n} and let Ln be the length of a longest
increasing subsequence of �n.
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Claim 2.7.
ELn = ⇥(

p
n).

Proof. We first prove that

lim sup

n!1

ELnp
n

 e,

which implies half of the claim. Bounding the expectation of Ln is not straightfor-
ward as it is the expectation of a maximum. A natural way to proceed is to find a
value ` for which P[Ln � `] is “small.” More formally, we bound the expectation
as follows

ELn  `P[Ln < `] + nP[Ln � `]  `+ nP[Ln � `], (2.6)

for an ` chosen below. To bound the probability on the r.h.s., we appeal to the
first moment method by letting Xn be the number of increasing subsequences of
length `. We also use the indicator trick, i.e., we think of Xn as a sum of indicators
over subsequences (not necessarily increasing) of length `. There are

�

n
`

�

such
subsequences, each of which is increasing with probability 1/`!. Note that these
subsequences are not independent. Nevertheless, by the linearity of expectation
and the first moment method,

P[Ln � `] = P[Xn > 0]  EXn =

1

`!

✓

n

`

◆

 n`

[``/e`]2
=

✓

e
p
n

`

◆

2`

.

Note that, in order for this bound to go to 0, we need ` > e
p
n. The first claim

follows by taking ` = (1 + �)e
p
n in (2.6) for any � > 0.

For the other half of the claim, we show that

ELnp
n

� 1.

This part does not rely on the first moment method (and may be skipped). We seek
a lower bound on the expected length of a longest increasing subsequence. The
proof uses the following two ideas. First observe that there is a natural symme-
try between the lengths of the longest increasing and decreasing subsequences—
they are identically distributed. Moreover if a permutation has a “short” longest
increasing subsequence, then intuitively it must have a “long” decreasing subse-
quence, and vice versa. Combining these two observations gives a lower bound
on the expectation of Ln. Formally, let Dn be the length of a longest decreasing
subsequence. By symmetry and the arithmetic mean-geometric mean inequality,
note that

ELn = E


Ln +Dn

2

�

� E
p

LnDn.
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We show that LnDn � n, which proves the claim. We use a clever combinatorial
argument. Let L(k)

n be the length of a longest increasing subsequence ending at
position k, and similarly for D(k)

n . It suffices to show that the pairs (L(k)
n , D(k)

n ),
1  k  n are distinct. Indeed, noting that L(k)

n  Ln and D(k)
n  Dn, the

number of pairs in [Ln]⇥ [Dn] is at most LnDn which must then be at least n. Let
1  j < k  n. If �n(k) > �n(j) then we see that L(k)

n > L(j)
n by appending

�n(k) to the subsequence ending at position j achieving L(j)
n . The opposite holds

for the decreasing case, which implies that (L(j)
n , D(j)

n ) and (L(k)
n , D(k)

n ) must be
distinct. This combinatorial argument is known as the Erdös-Szekeres theorem.
That concludes the proof of the second claim.

Remark 2.8. It has been shown that in fact

EL
n

= 2

p
n+ cn1/6

+ o(n1/6
),

where c = �1.77... [BDJ99].

2.1.4 . Constraint satisfaction: bound on random k-SAT threshold

For r 2 R
+

, let �n,r : {0, 1}n ! {0, 1} be a random k-CNF formula on n
Boolean variables z

1

, . . . , zn with rn clauses. (For simplicity, assume rn is an
integer.) I.e., �n,r is an AND of rn ORs, each obtained by picking independently
k literals uniformly at random (with replacement). Recall that a literal is a variable
zi or its negation z̄i. The formula �n,r is said to be satisfiable if there exists an
assignment z such that �n,r(z) = 1. Clearly the higher the value of r, the less
likely it is for �n,r to be satisfiable. In fact it is conjectured that there exists an
r⇤k 2 R

+

such that

lim

n!1
P[�n,r is satisfiable] =

(

0, if r > r⇤k,

1, if r < r⇤k.

Studying such threshold phenomena or phase transitions is a major theme of mod-
ern discrete probability. Using the first moment method, we give an upper bound
on this conjectured threshold.

Claim 2.9.

r > 2

k
ln 2 =) lim sup

n!1
P[�n,r is satisfiable] = 0.

Proof. How to start should be obvious: let Xn be the number of satisfying assign-
ments of �n,r. Applying the first moment method, since

P[�n,r is satisfiable] = P[Xn > 0],
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it suffices to show that EXn ! 0.
To compute EXn, we use the indicator trick

Xn =

X

z2{0,1}n
{z satisfies �n,r}.

There are 2

n possible assignments, each of which satisfies �n,r with probability
(1 � 2

�k
)

rn. Indeed note that the rn clauses are independent and each clause
literal picked is satisfied with probability 1/2. Therefore, by the assumption on r,
for some " > 0

EXn = 2

n
(1� 2

�k
)

rn

< 2

n
(1� 2

�k
)

(2

k
ln 2)(1+")n

< 2

ne�(ln 2)(1+")n

= 2

�"n

! 0.

Remark 2.10. For k � 3, it has been shown that if r < 2

k

ln 2� k

lim inf

n!1
P[�

n,r

is satisfiable] = 1.

See [ANP05]. For the k = 2 case, the conjecture above has been established and r⇤2 =

1 [CR92].

2.1.5 . Percolation on Zd: existence of a phase transition

We use the first moment method to prove the existence a non-trivial phase transition
in bond percolation on lattices.

Percolation on Z2 Consider bond percolation on the two-dimensional lattice L2

with density p and let Pp denote the corresponding measure. Writing x , y if
x, y 2 L2 are connected by an open path, recall that the open cluster of x is

Cx := {y 2 Z2

: x , y}.
The percolation function is defined as

percolation
function✓(p) := Pp[|C0| = +1],

i.e., ✓(p) is the probability that the origin is connected by open paths to infinitely
many vertices. It is intuitively clear that the function ✓(p) is non-decreasing. Indeed
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consider the following alternative representation of the percolation process: to each
edge e, assign a uniform [0, 1] random variable Ue and declare the edge open if
Ue  p. Using the same Ues for densities p

1

< p
2

, it follows immediately from
the monotonicity of the construction that ✓(p

1

)  ✓(p
2

). (We will have a lot more
to say about this type of “coupling” argument in Chapter 4.) Moreover note that
✓(0) = 0 and ✓(1) = 1. The critical value is defined as

critical value

pc(L2

) = sup{p � 0 : ✓(p) = 0},

the point at which the probability that the origin is contained in an infinite open
cluster becomes positive. Note that by a union bound over all vertices, when
✓(p) = 0, we have that Pp[9x, |Cx| = +1] = 0. Conversely, because {9x, |Cx| =
+1} is a tail event, by Kolmogorov’s 0-1 law (e.g. [Dur10, Theorem 2.5.1]) it
holds that Pp[9x, |Cx| = +1] = 1 when ✓(p) > 0.

Using the first moment method we show that the critical value is non-trivial,
i.e., that it is in (0, 1). This is another example of a threshold phenomenon.

Claim 2.11.
pc(L2

) 2 (0, 1).

Proof. We first show that, for any p < 1/3, ✓(p) = 0. We observe that an infinite
C
0

must contain an open self-avoiding path starting at 0 of infinite length and, as a
result, of all lengths. To apply the first moment method, we let Xn be the number
of open self-avoiding paths of length n starting at 0. Then, by monotonicity,

P[|C
0

| = +1]  P[\n{Xn > 0}] = lim

n
P[Xn > 0]  lim sup

n
E[Xn].

We note that
EXn  4(3

n�1

)pn, (2.7)

where we bounded the number of self-avoiding paths by noting that they cannot
backtrack, giving 4 choices at the first step, and 3 choices at each subsequent step.
The bound (2.7) goes to 0 when p < 1/3, which proves the first part of the claim.

For the other direction, we show that ✓(p) > 0 for p close enough to 1. This
proof uses a standard contour argument, also known as a Peierls’ argument, which
is based on the following construction. Consider the dual lattice bL2 whose vertices

dual lattice
are Z2

+(1/2, 1/2) and whose edges connect vertices u, v with ku�vk
1

= 1. See
Figure 2.2. Note that each edge in the primal lattice L2 has a unique corresponding
edge in the dual lattice which crosses it perpendicularly. We make the same as-
signment, open or closed, for corresponding primal and dual edges. The following
graph-theoretic lemma, whose proof is sketched below, forms the basis of contour
arguments.
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Figure 2.2: Primal (black) and dual (blue) lattices.

Lemma 2.12 (Contour lemma). If |C
0

| < +1, then there is a closed self-avoiding
cycle around the origin in the dual lattice bL2.

To prove that ✓(p) > 0 for p close enough to 1, the idea is to use the first
moment method with Xn equal to the number of closed self-avoiding dual cycles
of length n surrounding the origin. Namely,

P[|C
0

| < +1]  P[9n � 4, Xn > 0]


X

n�4

P[Xn > 0]


X

n�4

EXn


X

n�4

n

2

3

n�1

(1� p)n

=

3

3

(1� p)4

2

X

m�1

(m+ 3)(3(1� p))m�1

=

3

3

(1� p)4

2

✓

1

(1� 3(1� p))2
+ 3

1

1� 3(1� p)

◆

,

when p > 2/3 (where the first term comes from differentiating the geometric se-
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ries). This expression can in fact be taken smaller than 1 if we let p ! 1. Above
we bounded the number of dual cycles of length n around the origin by the number
of choices for the starting edge across the upper y-axis and for each n � 1 subse-
quent non-backtracking choices. We have shown that ✓(p) > 0 for p close enough
to 1, and that concludes the proof. (Exercise 2.2 sketches a proof that ✓(p) > 0 for
p > 2/3.)

It is straightforward to extend the claim to Ld. Exercise 2.3 asks for the details.

Proof of the contour lemma We conclude this section by sketching the proof of
the contour lemma which relies on topological arguments.

Proof of Lemma 2.12. Assume |C
0

| < +1. Imagine identifying each vertex in L2

with a square of side 1 centered around it so that the sides line up with dual edges.
Paint green the squares of vertices in C

0

. Paint red the squares of vertices in Cc
0

which share a side with a green square. Leave the other squares white. Let u
0

be
the highest vertex in C

0

along the y-axis and let v
0

be the dual vertex corresponding
to the upper left corner of the square of u

0

. Because u
0

is highest, it must be that
the square above it is red. Walk along the dual edge {v

0

, v
1

} separating the squares
of u

0

and u
0

+ (0, 1) from v
0

to v
1

. Notice that this edge satisfies what we call
the red-green property: a red square sits on your left and a green square is on
your right. Proceed further by iteratively walking along an incident dual edge with
the following rule. Choose an edge satisfying the red-green property, with the
edges to your left, straight ahead, and to your right in decreasing order of priority
(i.e., choose the highest priority edge that satisfies the red-green property). Stop
when a previously visited dual vertex is reached. The claim is that this procedure
constructs the desired cycle. Let v

0

, v
1

, v
2

, . . . be the dual vertices visited. By
construction {vi�1

, vi} is a dual edge for all i.

- (A dual cycle is produced) We first argue that this procedure cannot get stuck.
Let {vi�1

, vi} be the edge just crossed and assume that it has the red-green
property. If there is a green square to the left ahead, then the edge to the
left, which has highest priority, has the red-green property. If the left square
ahead is not green, but the right one is, then the left square must in fact be
red by construction. In that case, the edge straight ahead has the red-green
property. Finally, if neither square ahead is green, then the right square must
in fact be red because the square behind to the right is green by assumption.
That implies that the edge to the right has the red-green property. Hence we
have shown that the procedure does not get stuck. Moreover, because by

15



assumption the number of green squares is finite, this procedure must even-
tually terminate when a previously visited dual vertex is reached, forming a
cycle.

- (The origin lies within the cycle) The inside of a cycle in the plane is well-
defined by the Jordan curve theorem. So the dual cycle produced above has
its adjacent green squares either on the inside (negative orientation) or on the
outside (positive orientation). In the former case, the origin must lie inside
the cycle as otherwise the vertices corresponding to the green squares on the
inside would not be in C

0

. So it remains to consider the latter case where, for
similar reasons, the origin is outside the cycle.

Let vj be the repeated dual vertex. Assume first that vj 6= v
0

and let vj�1

and
vj+1

be the dual vertices preceding and following vj during the first visit to
vj . Let vk be the dual vertex preceding vj on the second visit. After travers-
ing {vj�1

, vj}, vk cannot be to the left or to the right because in those cases
the red-green property of the two corresponding edges are not compatible.
So vk is straight ahead and, by the priority rules, vj+1

must be to the left.
But in that case, for the origin to lie outside the cycle and for the cycle to
avoid the path v

0

, . . . , vj�1

, we must traverse the cycle with a negative ori-
entation, i.e., the green squares adjacent to the cycle must be on the inside, a
contradiction.

So, finally, assume v
0

is the repeated vertex. If the cycle is traversed with a
positive orientation and the origin is on the outside, it must be that the cycle
crosses the y-axis at least once above u

0

+ (0, 1), a contradiction.

Hence we have shown that the origin is inside the cycle.

That concludes the proof.

2.2 Second moment method

The first moment method gives an upper bound on the probability that a non-
negative, integer-valued random variable is positive—provided its expectation is
small enough. In this section we seek a lower bound on that probability. We first
note that a large expectation does not suffice in general. Say Xn is n2 with prob-
ability 1/n, and 0 otherwise. Then EXn = n ! +1, yet P[Xn > 0] ! 0.
That is, although the expectation diverges, the probability that Xn is positive can
be arbitrarily small.

So we turn to the second moment. Intuitively the basis for the so-called second
moment method is that, if the expectation of Xn is large and its variance is rela-
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tively small, then we can bound the probability that Xn is close to 0. As we will
see in applications, the first and second moment methods often work hand in hand.

2.2.1 Chebyshev’s and Paley-Zygmund inequalities

We recall two classical tail inequalities involving the second moment of a random
variable. The first one is an application of Markov’s inequality to the random
variable |X � EX|2.

Theorem 2.13 (Chebyshev’s inequality). Let X be a random variable with EX2 <
+1. Then, for all � > 0,

P[|X � EX| > �]  Var[X]

�2

. (2.8)

Proof. This follows immediately by applying (2.4) to |X�EX|2 with b = �2.

Of course this bound is non-trivial only when � is larger than the standard
deviation.

Example 2.14. Let X be a Gaussian random variable with mean 0 and variance
�2. A direct computation shows that E|X| = �

q

2

⇡ . Hence Markov’s inequality
gives

P[|X| � b]  E|X|
b

=

r

2

⇡
· �
b
,

while Chebyshev’s inequality gives

P[|X| � b] 
⇣�

b

⌘

2

.

For b large enough, Chebyshev’s inequality produces a stronger bound. See Fig-
ure 2.3 for some insight. J

Example 2.15 (Coupon collector’s problem). Let (Xi) be i.i.d. uniform random
variables over [n]. Let Tn,k be the first time that k elements of [n] have been
picked, i.e.,

Tn,k = inf {i : |{X
1

, . . . , Xi}| = k} ,
with Tn,0 := 0. We prove that the time it takes to pick all elements at least once—
or “collect each coupon”—has the following tail. For any " > 0, we have as
n ! +1:

17



Figure 2.3: Comparison of Markov’s and Chebyshev’s inequalities: the squared
deviation from the mean (in green) gives a better approximation of the indicator
function (in grey) close to the mean (here 0) than the absolute deviation (in orange).

Claim 2.16.

P

2

4

�

�

�

�

�

�

Tn,n � n
n
X

j=1

j�1

�

�

�

�

�

�

� "n log n

3

5! 0.

To prove this claim we note that the time elapsed between Tn,k�1

and Tn,k,
which we denote by ⌧n,k := Tn,k � Tn,k�1

, is geometric with success probability
1 � k�1

n . And all ⌧n,ks are independent. So, by standard results on geometric
variables (e.g. [Dur10, Example 1.6.5]), the expectation and variance of Tn,n are

E[Tn,n] =

n
X

i=1

✓

1� i� 1

n

◆�1

= n
n
X

j=1

j�1 ⇠ n log n, (2.9)

and

Var[Tn,n] 
n
X

i=1

✓

1� i� 1

n

◆�2

= n2

n
X

j=1

j�2  n2

+1
X

j=1

j�2

= ⇥(n2

). (2.10)
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Figure 2.4: Second moment method: if the standard deviation �X of X is less than
its expectation µX , then the probability that X is 0 is bounded away from 1.

So by Chebyshev’s inequality

P[|Tn,n � E[Tn,n]| � "n log n]  Var[Tn,n]

("n log n)2

 n2

P

+1
j=1

j�2

("n log n)2

! 0,

by (2.9) and (2.10). J

As an immediate corollary of Chebyshev’s inequality, we get a first version of
the second moment method: if the standard deviation of X is less than its expec-
tation, then the probability that X is 0 is bounded away from 1. See Figure 2.4.

Theorem 2.17 (Second moment method). Let X be a non-negative, integer-valued
random variable (not identically zero). Then

P[X > 0] � 1� Var[X]

(EX)

2

. (2.11)
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Proof. By (2.8),

P[X = 0]  P[|X � EX| � EX]  Var[X]

(EX)

2

.

The following tail inequality, a simple application of Cauchy-Schwarz, can be
seen as an anti-concentration bound, i.e., it gives a lower bound on the tail of a
random variable.

Theorem 2.18 (Paley-Zygmund inequality). Let X be a non-negative random vari-
able. For all 0 < ✓ < 1,

P[X � ✓EX] � (1� ✓)2
(EX)

2

E[X2

]

. (2.12)

Proof. We have

EX = E[X {X<✓EX}] + E[X {X�✓EX}]

 ✓EX +

p

E[X2

]P[X � ✓EX],

where we used Cauchy-Schwarz. Rearranging gives the result.

An immediate application of the Paley-Zygmund inequality gives a slightly
improved (but perhaps less intuitive) version of the second moment method.

Corollary 2.19. Let X be a non-negative random variable (not identically zero).
Then

P[X > 0] � (EX)

2

E[X2

]

= 1� Var[X]

(EX)

2

+Var[X]

. (2.13)

Proof. Take ✓ # 0 in (2.12).

We typically apply the second moment method to a sequence of random vari-
ables (Xn). The previous corollary gives a uniform lower bound on the probability
that {Xn > 0} when E[X2

n]  C(E[Xn])
2 for some C > 0.

Just like the first moment method, the second moment method is often used in
combination with sums of indicators (but see Section 2.2.4 for a weighted version).

Corollary 2.20 (Second moment method for sums of indicators). Let Bm = A
1

[
· · · [Am, where A

1

, . . . , Am is a collection of events. Write i ⇠ j if i 6= j and Ai

and Aj are not independent. Then, letting

µm :=

X

i

P[Ai], �m :=

X

i⇠j

P[Ai \Aj ],
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where the second sum is over ordered pairs, we have limm P[Bm] > 0 whenever
µm ! +1 and �m  Cµ2

m for some C > 0. If moreover �m = o(µ2

m) then
limm P[Bm] = 1.

Proof. Take X :=

P

i Ai in the second moment method. Note that

Var[X] =

X

i

Var[ Ai ] +

X

i 6=j

Cov[ Ai , Aj ],

where
Var[ Ai ] = E[( Ai)

2

]� (E[ Ai ])
2  P[Ai],

and, if Ai and Aj are independent,

Cov[ Ai , Aj ] = 0,

whereas, if i ⇠ j,

Cov[ Ai , Aj ] = E[ Ai Aj ]� E[ Ai ]E[ Aj ]  P[Ai \Aj ].

Hence
E[X2

]

(EX)

2

= 1 +

Var[X]

(EX)

2

 1 +

µm + �m
µ2

m

.

Applying Corollary 2.19 gives the result.

We give applications of Theorem 2.17 and Corollary 2.20 in Sections 2.2.2
and 2.2.3.

2.2.2 . Erdös-Rényi graphs: small subgraph containment

We have seen examples of threshold phenomena in constraint satisfaction problems
and percolation. Such thresholds are also common in random graphs. We consider
here Erdös-Rényi graphs. Formally, a threshold function for a graph property P is
a function r(n) such that

lim

n
Pn,pn [Gn has property P ] =

(

0, if pn ⌧ r(n)

1, if pn � r(n),

where, under Pn,pn , Gn ⇠ Gn,pn . is an Erdös-Rényi graph with n vertices and
density pn. In this section, we first illustrate this definition on the clique number of
an Erdös-Rényi graph, then we consider the more general subgraph containment
problem.
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Cliques Let !(G) be the clique number of a graph G, i.e., the size of its largest
clique number

clique.

Claim 2.21. The property !(G) � 4 has threshold function n�2/3.

Proof. Let Xn be the number of 4-cliques in the Erdös-Rényi graph Gn ⇠ Gn,pn .
Then, noting that there are

�

4

2

�

= 6 edges in a 4-clique,

En,pn [Xn] =

✓

n

4

◆

p6n = ⇥(n4p6n),

which goes to 0 when pn ⌧ n�2/3. Hence the first moment method gives one
direction.

For the other direction, we apply the second moment method for sums of in-
dicators. For an enumeration S

1

, . . . , Sm of the 4-tuples of vertices in Gn, let
A

1

, . . . , Am be the events that the corresponding 4-cliques are present. By the cal-
culation above we have µm = ⇥(n4p6n) which goes to +1 when pn � n�2/3.
Also µ2

m = ⇥(n8p12n ) so it suffices to show that �m = o(n8p12n ). Note that two
4-cliques with disjoint edge sets (but possibly sharing one vertex) are independent.
Suppose Si and Sj share 3 vertices. Then

Pn,pn [Ai |Aj ] = p3n,

as the event Aj implies that all edges between three of the vertices in Si are present,
and there are 3 edges between the remaining vertex and the rest of Si. Similarly if
|Si \ Sj | = 2, Pn,pn [Ai |Aj ] = p5n. Putting these together we get

�m =

X

i⇠j

Pn,pn [Aj ]Pn,pn [Ai |Aj ]

=

✓

n

4

◆

p6n

✓

4

3

◆

(n� 4)p3n +

✓

4

2

◆✓

n� 4

2

◆

p5n

�

= O(n5p9n) +O(n6p11n )

= O

✓

n8p12n
n3p3n

◆

+O

✓

n8p12n
n2pn

◆

= o(n8p12n )

= o(µ2

m),

where we used that pn � n�2/3 (so that for example n3p3n � 1). Corollary 2.20
gives the result.
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Roughly speaking the reason why the first and second moments suffice to pin-
point the threshold in this case is that the indicators in Xn are “mostly” pairwise
independent and, as a result, the sum is concentrated around its mean. Note in
particular that �m in Corollary 2.20 controls the extent of the dependence. We will
come back to the type of “local” dependence encountered here in Chapter ??.

General subgraphs The methods of Claim 2.21 can be applied to more general
subgraphs. However the situation is somewhat more complicated than it is for
cliques. For a graph H

0

, let vH0 and eH0 be the number of vertices and edges of
H

0

respectively. Let Xn be the number of copies of H
0

in Gn ⇠ Gn,pn . By the
first moment method,

P[Xn > 0]  E[Xn] = ⇥(n
vH0p

eH0
n ) ! 0,

when pn ⌧ n�vH0/eH0 . (The constant factor, which does not play a role in the
asymptotics, accounts in particular for the number of automorphisms of H

0

.) From
the proof of Claim 2.21, one might guess that the threshold function is n�vH0/eH0 .
That is not the case in general. To see what can go wrong, consider the graph
of Figure 2.5 whose edge density is eH0

vH0
=

6

5

. When pn � n�5/6, the expected
edge density

number of copies of H
0

tends to +1. But observe that the subgraph H of H
0

has the higher density 5/4 and, hence, when n�5/6 ⌧ pn ⌧ n�4/5 the expected
number of copies of H tends to 0. By the first moment method, the probability
that a copy of H

0

—and therefore H—is present in that regime is asymptotically
negligible despite its diverging expectation. This leads to the following definition

rH0 := max

⇢

eH
vH

: H ✓ H
0

, vH > 0

�

.

Assume H
0

has at least one edge.

Claim 2.22. “Having a copy of H
0

” has threshold n�1/rH0 .

Proof. We proceed as in Claim 2.21. Let H⇤
0

be a subgraph of H
0

achieving rH0 .
When pn ⌧ n�1/rH0 , the probability that a copy of H⇤

0

is in Gn tends to 0 by the
argument above. Therefore the same conclusion holds for H

0

itself.
Assume pn � n�1/rH0 . Let I

1

, . . . , Im be an enumeration of the copies of H
0

in a complete graph on the vertices of Gn. Let Ai be the event that Ii ✓ Gn. Using
the notation of Corollary 2.20,

µm = ⇥(nvH0p
eH0
n ) = ⌦(�H0),

where
�H0 := min

H✓H0,eH0>0

nvHpeHn .
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Figure 2.5: Graph H
0

and subgraph H .

Note that �H0 ! +1. The events Ai and Aj are independent if Ii and Ij share
no edge. Otherwise we write i ⇠ j. Note that there are ⇥(nvHn2(vH0�vH)

) pairs
Ii, Ij whose intersection is isomorphic to H . The probability that both elements of
such a pair are present in Gn is ⇥(peHn p

2(eH0�eH)

n ). Hence

�m =

X

i⇠j

P[Ai \Aj ]

=

X

H✓H0,eH>0

⇥

⇣

n2vH0�vHp
2eH0�eH
n

⌘

=

⇥(µ2

m)

⇥(�H0)

= o(µ2

m).

The result follows from Corollary 2.20.

Going back to the example of Figure 2.5, the proof above confirms that when
n�5/6 ⌧ pn ⌧ n�4/5 the second moment method fails for H

0

since �H0 ! 0.
In that regime, although there is in expectation a large number of copies of H

0

,
those copies are highly correlated as they are produced from a (vanishingly) small
number of copies of H—explaining the failure of the second moment method.
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2.2.3 . Erdös-Rényi graphs: connectivity threshold

In this section, we use the second moment method to show that the threshold func-
tion for connectivity in Erdös-Rényi graphs is logn

n . In fact we prove this result
by deriving the threshold function for the presence of isolated vertices. The con-
nection between the two is obvious in one direction. Isolated vertices imply a
disconnected graph. What is less obvious is that it works the other way too in the
following sense: the two thresholds actually coincide.

Isolated vertices We begin with isolated vertices.

Claim 2.23. “Not having an isolated vertex” has threshold function logn
n .

Proof. Let Xn be the number of isolated vertices in the Erdös-Rényi graph Gn ⇠
Gn,pn . Using 1� x  e�x for all x 2 R,

En,pn [Xn] = n(1� pn)
n�1  elogn�(n�1)pn ! 0,

when pn � logn
n . So the first moment method gives one direction: Pn,pn [Xn >

0] ! 0.
For the other direction, we use the second moment method. Let Aj be the

event that vertex j is isolated. By the computation above, using 1 � x � e�x�x2

for x 2 [0, 1/2],

µn =

X

i

Pn,pn [Ai] = n(1� pn)
n�1 � elogn�npn�np2n , (2.14)

which goes to +1 when pn ⌧ logn
n . Note that i ⇠ j for all i 6= j and

Pn,pn [Ai \Aj ] = (1� pn)
2(n�2)+1,

so that
�n =

X

i 6=j

Pn,pn [Ai \Aj ] = n(n� 1)(1� pn)
2n�3.

Because �n is not a o(µ2

n), we cannot apply Corollary 2.20. Instead we use Corol-
lary 2.19. We have

En,pn [X
2

n]

(En,pn [Xn])
2

=

µn + �n
µ2

n

 n(1� pn)n�1

+ n2

(1� pn)2n�3

n2

(1� pn)2n�2

 1

n(1� pn)n�1

+

1

1� pn
, (2.15)

which is 1 + o(1) when pn ⌧ logn
n .
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Connectivity We use Claim 2.23 to study the threshold for connectivity.

Claim 2.24. Connectivity has threshold function logn
n .

Proof. We start with the easy direction. If pn ⌧ logn
n , Claim 2.23 implies that the

graph has isolated vertices, and therefore is disconnected, with probability going
to 1 as n ! +1.

Assume that pn � logn
n . Let Dn be the event that Gn is disconnected. To

bound Pn,pn [Dn], for k 2 {1, . . . , n/2}, we consider Yk, the number of subsets of
k vertices that are disconnected from all other vertices in the graph. Then, by the
first moment method,

Pn,pn [Dn]  Pn,pn

2

4

n/2
X

k=1

Yk > 0

3

5 
n/2
X

k=1

En,pn [Yk].

The expectation of Yk is straightforward to estimate. Using that k  n/2 and
k! � (k/e)k,

En,pn [Yk] =

✓

n

k

◆

(1� pn)
k(n�k)  nk

k!
(1� pn)

kn/2 
⇣

en(1� pn)
n/2
⌘k

.

The expression in parentheses is o(1) when pn � logn
n . Summing over k,

Pn,pn [Dn] 
+1
X

k=1

⇣

en(1� pn)
n/2
⌘k

= O(n(1� pn)
n/2

) = o(1),

where we used that the geometric series is dominated asymptotically by its first
term.

A more detailed picture We have shown that connectivity and the absence of
isolated vertices have the same threshold function. In fact, in a sense, isolated ver-
tices are the “last obstacle” to connectivity. A slight modification of the proof above
leads to the following more precise (but sub-optimal) result. For k 2 {1, . . . , n/2},
let Zk be the number of connected components of size k in Gn. In particular, Z

1

is the number of isolated vertices. We consider the critical window pn =

cn
n where

cn := log n + s for some fixed s 2 R. We show that, in that regime, the graph is
composed of a large connected component together with some isolated vertices.

Claim 2.25.

Pn,pn [Z1

> 0] � 1

1 + es
+ o(1) and Pn,pn

2

4

n/2
X

k=2

Zk > 0

3

5

= o(1).
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Proof. We first consider the isolated vertices. From (2.14) and (2.15),

Pn,pn [Z1

> 0] �
✓

e� logn+npn+np2n
+

1

1� pn

◆�1

=

1

1 + es
+ o(1),

as n ! +1.
To bound the number of components fo size k > 1, we note first the random

variable Yk used in the previous claim (which imposes no condition on the edges
between the vertices) is too loose to provide a suitable bound. Instead, to bound the
probability that a set of k vertices forms a connected component, we observe that
a connected component is characterized by two properties: it is disconnected from
the rest of the graph; and it contains a spanning tree. Formally, for k = 2, . . . , n/2,
we let Z 0

k be the the number of (not necessarily induced) maximal trees of size k
or, put differently, the number of spanning trees of connected components of size
k. Then, by the first moment method, the probability that a connected component
of size > 1 is present in Gn is bounded by

Pn,pn

2

4

n/2
X

k=2

Zk > 0

3

5  Pn,pn

2

4

n/2
X

k=2

Z 0
k > 0

3

5 
n/2
X

k=2

En,pn [Z
0
k]. (2.16)

To estimate the expectation of Z 0
k, we use Cayley’s theorem (e.g. [LP, Corollary

4.5]) which implies that there are kk�2 labelled trees on a set of k vertices. Recall
further that a tree on k vertices has k � 1 edges. Hence,

En,pn [Z
0
k] =

✓

n

k

◆

kk�2

| {z }

(a)

pk�1

n
|{z}

(b)

(1� pn)
k(n�k)

| {z }

(c)

,

where (a) is the number of trees of size k, (b) is the probability that such a tree is
present in the graph, and (c) is the probability that this tree is disconnected from
every other vertex in the graph. Using that k! � (k/e)k,

En,pn [Z
0
k] 

nk

k!
kk�2pk�1

n (1� pn)
k(n�k)  n

⇣

ecne
�
(

1� k
n)

cn
⌘k

.

For k  n/2, the expression in parentheses is o(1). In fact, for k � 2, En,pn [Z
0
k] =

o(1). Furthermore, summing over k > 2,
n/2
X

k=3

En,pn [Z
0
k] 

+1
X

k=3

n
⇣

ecne
� 1

2 cn
⌘k

= O(n�1/2
log

3 n) = o(1).

Plugging this back into (2.16) concludes the proof.

The limit of Pn,pn [Z1

> 0] can be computed explicitly using the method of
moments. See Exercise 2.12.
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2.2.4 . Percolation on trees: branching number, weighted second mo-
ment method, and application to the critical value

Consider bond percolation on the infinite d-regular tree Td. Root the tree arbi-
trarily at a vertex 0 and let C

0

be the open connected component containing 0. In
this section we illustrate the use of the first and second moment methods on the
identification of the critical value

pc(Td) = sup{p 2 [0, 1] : ✓(p) = 0},

where recall that the percolation function is ✓(p) = Pp[|C0| = +1]. We then
consider general trees, introduce the branching number, and present a weighted
version of the second moment method.

Regular tree Our main result for Td is the following.

Theorem 2.26.
pc(Td) =

1

d� 1

.

Proof. Let @n be the n-th level of Td, i.e., the set of vertices at graph distance n
from 0. Let Xn be the number of vertices in @n\C

0

. In order for the component of
the root to be infinite, there must be at least one vertex on the n-th level connected
to the root by an open path. By the first moment method,

✓(p)  Pp[Xn > 0]  EpXn = d(d� 1)

n�1pn ! 0, (2.17)

when p < 1

d�1

. Here we used that there is a unique path between 0 and any vertex
in the tree to deduce that Pp[x 2 C

0

] = pn for x 2 @n. Equation (2.17) implies
pc(Td) � 1

d�1

.
The second moment method gives a lower bound on Pp[Xn > 0]. To simplify

the notation, it is convenient to introduce the “branching ratio” b := d � 1. We
say that x is a descendant of z if the path between 0 and x goes through z. Each

descendant
z 6= 0 has d � 1 descendant subtrees, i.e., subtrees of Td rooted at z made of all
descendants of z. Let x ^ y be the most recent common ancestor of x and y, i.e., most recent

common
ancestor

the furthest vertex from 0 that lies on both the path from 0 to x and the path from
0 to y; see Figure 2.6. Letting µ := Ep[Xn]

28



Figure 2.6: Most recent common ancestor of x and y.

Ep[X
2

n] =

X

x,y2@n

Pp[x, y 2 C
0

]

=

X

x2@n

Pp[x 2 C
0

] +

n�1

X

m=0

X

x,y2@n
{x^y2@m}p

mp2(n�m)

= µn + (b+ 1)bn�1

n�1

X

m=0

(b� 1)b(n�m)�1p2n�m

 µn + (b+ 1)(b� 1)b2n�2p2n
+1
X

m=0

(bp)�m

= µn + µ2

n · b� 1

b+ 1

· 1

1� (bp)�1

,

where, on the third line, we used that all vertices on the n-th level are equivalent
and that, for a fixed x, the set {y : x^y 2 @m} is composed of those vertices in @n
that are descendants of x ^ y but not in the descendant subtree of x ^ y containing
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x. When p > 1

d�1

=

1

b , dividing by (EpXn)
2

= µ2

n ! +1, we get

Ep[X2

n]

(EpXn)
2

 1

µn
+

b� 1

b+ 1

· 1

1� (bp)�1

(2.18)

 1 +

b� 1

b+ 1

· 1

1� (bp)�1

=: Cb,p,

for n large enough. By the second moment method (version of Corollary 2.19) and
monotonicity,

✓(p) = Pp[8n, Xn > 0] = lim

n
Pp[Xn > 0] � C�1

b,p > 0,

which concludes the proof. (Note that the version of the second moment method in
Theorem 2.17 does not work here. Subtract 1 in (2.18) and take p close to 1/b.)

The argument above relies crucially on the fact that, in a tree, any two vertices
are connected by a unique path. For instance, estimating Pp[x 2 C

0

] is much harder
on a lattice. Note furthermore that, intuitively, the reason why the first moment
captures the critical threshold exactly in this case is that bond percolation on Td is
a branching process, where Xn represents the population size at generation n. The
qualitative behavior of a branching process is governed by its expectation: when
the mean number of offsprings bp exceeds 1, the process grows exponentially on
average and “explodes” with positive probability. We will come back to this point
of view in Chapter 5 where branching processes are used to give a more refined
analysis of bond percolation on Td.

General trees Let T be a locally finite tree (i.e., all its degrees are finite) with
root 0. For an edge e, let ve be the endvertex of e furthest from the root. We denote
by |e| the graph distance between 0 and ve. A cutset separating 0 and +1 is a set cutset
of edges ⇧ such that all infinite self-avoiding paths starting at 0 go through ⇧. For
a cutset ⇧, we let ⇧

v

:= {ve : e 2 ⇧}. Repeating the argument in (2.17), for any
cutset ⇧, by the first moment method

✓(p)  Pp[C0 \⇧v

6= ;] 
X

u2⇧v

Pp[u 2 C
0

] =

X

e2⇧
p|e|. (2.19)

This bound naturally leads to the following definition.

Definition 2.27 (Branching number). The branching number of T is given by
branching
number

br(T ) = sup

(

� � 1 : inf

cutset ⇧

X

e2⇧
��|e| > 0

)

. (2.20)
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Remark 2.28. For locally finite trees, it suffices to consider finite cutsets. See the proof
of [LP, Theorem 3.1].

Equation (2.19) implies that pc(T ) � 1

br(T )

. Remarkably, this bound is tight.
The proof is based on a weighted second moment method.

Theorem 2.29. For any rooted, locally finite tree T ,

pc(T ) =

1

br(T )

.

Proof. As we argued above, pc(T ) � 1

br(T )

follows from (2.19) and (2.20).
Let p > 1

br(T )

, p�1 < � < br(T ), and " > 0 such that

X

e2⇧
��|e| � " (2.21)

for all cutsets ⇧. The existence of such an " is guaranteed by the definition of the
branching number. As in the proof of Theorem 2.26, we use that ✓(p) is the limit
as n ! +1 of the probability that C

0

reaches the n-th level. However, this time,
we use a weighted count on the n-th level. Let Tn be the first n levels of T and,
as before, let @n be the vertices on the n-th level. For a probability measure ⌫ on
@n, we define the weighted count

Xn =

X

z2@n

⌫(z) {z2C0}
1

Pp[z 2 C
0

]

.

The purpose of the denominator is normalization:

EpXn =

X

z2@n

⌫(z) = 1.

(Note that multiplying all weights by a constant does not affect the event {Xn > 0}
and that the constant cancels out in the ratio of (EpXn)

2 and EpX2

n in the second
moment method.) Because of (2.21), a natural choice of ⌫ follows from the max-
flow min-cut theorem which guarantees the existence of a unit flow � from 0 to @n
satisfying the capacity constraint �(e)  "�1��|e|, for all edges e in Tn. Define
⌫(z) to be the flow entering z 2 Tn under �. In particular, because � is a unit flow,
⌫ restricted to @n defines a probability measure. It remains to bound the second
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moment of Xn under this choice. We have

EpX
2

n =

X

x,y2@n

⌫(x)⌫(y)
Pp[x, y 2 C

0

]

Pp[x 2 C
0

]Pp[y 2 C
0

]

=

n
X

m=0

X

x,y2@n
{x^y2@m}⌫(x)⌫(y)

pmp2(n�m)

p2n

=

n
X

m=0

p�m
X

z2@m

0

@

X

x,y2@n
{x^y=z}⌫(x)⌫(y)

1

A .

In the expression in parentheses, for each x the sum over y is at most ⌫(x)⌫(z) by
the definition of a flow. Hence

EpX
2

n 
n
X

m=0

p�m
X

z2@m

(⌫(z))2


n
X

m=0

p�m
X

z2@m

("�1��m
)⌫(z)

 "�1

+1
X

m=0

(p�)�m

=

"�1

1� (p�)�1

=: C",�,p < +1,

where the second line follows from the capacity constraint, and we used p� > 1 on
the last line. From the second moment method (recall that EpXn = 1), it follows
that

✓(p) � C�1

",�,p > 0,

and pc(T )  1

br(T )

.

2.3 Chernoff-Cramér method

In general, Chebyshev’s inequality gives a bound on the concentration around the
mean of a square-integrable random variable that is best possible. Indeed take X
to be µ+ b� or µ� b� with probability 1/2�2 respectively, and µ otherwise. Then
EX = µ, VarX = �2, and for � = b�,

P[|X � EX| � �] = P[|X � EX| = �] =
1

b2
=

VarX

�2

.
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However in many special cases much stronger bounds can be derived. For instance,
if X is N(0, 1), then by standard inequalities (e.g., [Dur10, Theorem 1.2.3])

P[|X � EX| � �] ⇠
r

2

⇡
��1

exp(��2/2) ⌧ 1

�2

, (2.22)

as � ! +1. In this section we discuss the Chernoff-Cramér method, which gives
exponential tail inequalities—provided the moment-generating function is finite in
an interval around 0.

2.3.1 Tail bounds via the moment-generating function

Under a finite variance, taking a square inside Markov’s inequality produces Cheby-
shev’s inequality. This “boosting” can be pushed further when stronger integrabil-
ity conditions hold. Assume X is a centered random variable such that MX(s) <
+1 for s 2 (�s

0

, s
0

) for some s
0

> 0. Taking an exponential inside Markov’s
inequality instead gives, for any � > 0 and s > 0,

P[X � �] = P
h

esX � es�
i

 MX(s)

es�
.

For any s < s
0

, this observation already leads to an exponential concentration
bound on X . But a better bound may be obtained by optimizing the choice of s.
We give a few examples below.

Theorem 2.30 (Chernoff-Cramér method). Let X be a centered random variable
such that MX(s) < +1 on s 2 (�s

0

, s
0

) for some s
0

> 0. Then, for any � > 0,

P[X � �]  exp (� ⇤
X(�)) ,

where
 

⇤
X(�) = sup

s2R+

(s� � X(s)),

is the so-called Fenchel-Legendre dual of the cumulant-generating function
cumulant-
generating
function

 X(s) = logMX(s).

We sometimes refer to the bound

P[X � �]  exp (�s� + X(s)) ,

as the Chernoff-Cramér bound.
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Gaussian variables Returning to the Gaussian case, let X ⇠ N(0, ⌫) where
⌫ > 0 is the variance and note that

MX(s) =

Z

+1

�1
esx

1p
2⇡⌫

e�
x2

2⌫
dx

=

Z

+1

�1
e

s2⌫
2

1p
2⇡⌫

e�
(x�s⌫)2

2⌫
dx

= exp

✓

s2⌫

2

◆

,

so that

 

⇤
X(�) = sup

s>0

(s� � s2⌫/2) =
�2

2⌫
, (2.23)

achieved at s� = �/⌫. Plugging  ⇤
X(�) into Theorem 2.30 leads to the bound

P[X � �]  exp

✓

��2

2⌫

◆

, (2.24)

which is much sharper than Chebyshev’s inequality—compare to (2.22).

Poisson variables Let Z be Poisson with mean µ and recall that, letting X =

Z � µ,
 X(s) = µ(es � s� 1),

so that

 

⇤
X(�) = sup

s>0

(s��µ(es�s�1)) = µ

✓

1 +

�

µ

◆

log

✓

1 +

�

µ

◆

� �

µ

�

:= µh

✓

�

µ

◆

,

achieved at s� = log

⇣

1 +

�
µ

⌘

. Plugging  ⇤
X(�) into Theorem 2.30 leads to the

bound
P[Z � µ+ �]  exp

✓

�µh

✓

�

µ

◆◆

.

Binomial variables and Chernoff bounds The Chernoff-Cramér method is par-
ticularly useful for sums of independent random variables as the moment-generating
function then factorizes. Let Z be a binomial random variable with parameters n
and p. Recall that Z is a sum of i.i.d. indicators Z

1

, . . . , Zn and, letting Xi = Zi�p
and X = Z � np,

 Xi(s) = log (pes + (1� p))� ps,
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so that

 

⇤
X(�) = sup

s>0

(s� � n X1(s)) = sup

s>0

n

✓

s

✓

�

n

◆

� X1(s)

◆

= n ⇤
X1

✓

�

n

◆

.

For b 2 (0, 1� p), letting a = b+ p, direct calculation gives

 

⇤
X1

(b) = sup

s>0

(sb� (log [pes + (1� p)]� ps))

= (1� a) log
1� a

1� p
+ a log

a

p
=: D(akp), (2.25)

achieved at sb = log

(1�p)a
p(1�a) . The function D(akp) in (2.25) is the so-called

Kullback-Leibler divergence or relative entropy of Bernoulli variables with param-
Kullback-Leibler
divergence

eters a and p respectively. Plugging  ⇤
X(�) into Theorem 2.30 leads to the bound

P[Z � np+ �]  exp (�nD (p+ �/nkp)) .
Applying the same argument to Z 0

= n� Z gives a bound in the other direction.

Remark 2.31. For large deviations, i.e. when � = bn for some b > 0, the previous bound
is tight in the sense that

� 1

n
logP[Z � np+ bn] ! D (p+ bkp) ,

as n ! +1. The theory of large deviations, which deals with asymptotics of probabilities
of rare events, provides general results along those lines. See e.g. [Dur10, Section 2.6].
Upper bounds will be enough for our purposes.

The following related bounds, proved in Exercise 2.6, are often useful.

Theorem 2.32 (Chernoff bounds for Poisson trials). Let Z
1

, . . . , Zn be indepen-
dent {0, 1}-valued random variables with P[Zi = 1] = pi and µ =

P

i pi. These
are called Poisson trials. Let Z =

P

i Zi. Then:
Poisson trials

1. Above the mean

(a) For any � > 0,

P[Z � (1 + �)µ] 
✓

e�

(1 + �)(1+�)

◆µ

.

(b) For any 0 < �  1,

P[Z � (1 + �)µ]  e�µ�2/3.
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2. Below the mean

(a) For any 0 < � < 1,

P[Z  (1� �)µ] 
✓

e��

(1� �)(1��)

◆µ

.

(b) For any 0 < � < 1,

P[Z  (1� �)µ]  e�µ�2/2.

There are innumerable applications of the Chernoff-Cramér method. We dis-
cuss a few in the next subsections.

2.3.2 . Randomized algorithms: Johnson-Lindenstrauss, "-nets, and
application to compressed sensing

In this section we discuss an application of the Chernoff-Cramér method to dimen-
sionality reduction.

Johnson-Lindenstrauss The Johnson-Lindenstrauss lemma states roughly that,
for any collection of points in a high-dimensional Euclidean space, one can find
an embedding of much lower dimension that preserves the metric relationships of
the points, i.e., their norms and distances. Remarkably, no structure is assumed on
the points and the result is independent of the original dimension. The method of
proof simply involves applying a well-chosen random mapping.

Before stating and proving the lemma, we define the mapping employed. Let
A be a d ⇥ n matrix whose entries are independent N(0, 1). Note that, for any
fixed z 2 Rn,

EkAzk2
2

= E

2

4

d
X

i=1

0

@

n
X

j=1

Aijzj

1

A

2

3

5

= dVar

2

4

n
X

j=1

A
1jzj

3

5

= dkzk2
2

, (2.26)

where we used the independence of the A
1js and

E

2

4

n
X

j=1

Aijzj

3

5

= 0. (2.27)

Hence the linear mapping L =

1p
d
A is an isometry “on average.” We use the

Chernoff-Cramér method to prove a high probability result.
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Theorem 2.33 (Johnson-Lindenstrauss). Let x(1), . . . ,x(m) be arbitrary points in
Rn. Fix �, ✓ > 0 and d � 8

3

✓�2

(logm+

1

2

log ��1

). Let A be a d⇥n matrix whose
entries are independent N(0, 1) and consider the linear mapping L =

1p
d
A. Then

the following hold with probability at least 1� �:

(1� ✓)kx(i)k
2

 kLx(i)k
2

 (1 + ✓)kx(i)k
2

, 8i
and

(1� ✓)kx(i) � x

(j)k
2

 kLx(i) � Lx(j)k
2

 (1 + ✓)kx(i) � x

(j)k
2

, 8i, j.
Proof. Fix a z 2 Rn with kzk

2

= 1. To prove the theorem it suffices to show that
kLzk

2

/2 [1 � ✓, 1 + ✓] with probability at most �/(m +

�

m
2

�

) and use a union
bound over all points z = x

(i)/kx(i)k
2

and pairwise differences z = (x

(i) �
x

(j)
)/kx(i) � x

(j)k
2

.
Recall that a sum of independent Gaussians is Gaussian. So

(Az)k ⇠ N(0, kzk2
2

) = N(0, 1), 8k,
where we used (2.26) and (2.27) to compute the variance. Hence W = kAzk2

2

is
a sum of squares of independent Gaussians (also known as �2-distribution with d
degrees of freedom or �(d/2, 2)). Using independence and the change of variable
u = x

p
1� 2s,

MW (s) =

✓

1p
2⇡

Z

+1

�1
esx

2
e�x2/2

dx

◆d

=

1

(1� 2s)d/2
, s < 1/2.

Applying the Chernoff-Cramér method with s = 1

2

(1� d/�) gives

P[W � �]  e(d��)/2

✓

�

d

◆d/2

.

Finally, take � = d(1 + ✓)2. Rearranging we get

P[kLzk
2

� 1 + ✓] = P[kAzk2
2

� d(1 + ✓)2]

= P[W � �]

 exp

��d(✓ + ✓2/2� log(1 + ✓))
�

 exp

✓

�3

4

d✓2
◆

,

where we used that log(1+x)  x�x2/4 on [0, 1]. (To check the inequality, note
that the two sides are equal at 0 and compare the derivatives on [0, 1].) Our choice
of d gives that the r.h.s. is less than �/m2. The other direction is similar.
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Remark 2.34. The Johnson-Lindenstrauss lemma is essentially optimal [Alo03]. Note
however that it relies crucially on the use of the Euclidean norm [BC03].

The Johnson-Lindenstrauss lemma makes it possible to solve certain compu-
tational problems, e.g., finding the nearest point to a query, more efficiently by
working in a smaller dimension. We discuss a different type of application next.

Restricted isometries and "-nets In the compressed sensing problem, one seeks
to recover a signal x 2 Rn from a small number of measurements (Lx)i, i =

1, . . . , d. In complete generality, one needs n such measurements to recover any
x 2 Rn as the sensing matrix L must be invertible (or, more precisely, injective).

sensing matrix
However, by imposing extra structure on the signal, much better results can be
obtained. We consider the case of sparse signals.

Definition 2.35 (Sparse vectors). We say that a vector z 2 Rn is k-sparse if it has
k-sparse vector

at most k non-zero entries. We let S n
k be the set of k-sparse vectors in Rn. Note

that S n
k is a union of

�

n
k

�

linear subspaces, one for each support of the nonzero
entries.

To solve the compressed sensing problem in this case, it suffices to find a sens-
ing matrix L satisfying that all subsets of 2k columns are linearly independent.
Indeed in that case, if x, x0 2 S n

k , then x � x0 has at most 2k nonzero entries.
Hence in order to have L(x� x0) = 0 it must be that x� x0 = 0. That implies the
required injectivity. The implication goes in the other direction as well. Observe
for instance that the matrix used in the Johnson-Lindenstrauss lemma satisfies this
property as long as d � 2k. Because of the continuous density of its entries, the
probability that 2k of its columns are linearly dependent is 0 when d � 2k.

For practical applications, however, other requirements must be met: compu-
tational efficiency and robustness to measurement noise as well as to the sparsity
assumption. We discuss the first two issues (and see Remark 2.40 for the last one
which can be dealt with along the same lines). The following definition will play a
key role.

Definition 2.36 (Restricted isometry property). A d⇥n linear mapping L satisfies
the (k, ✓)-restricted isometry property (RIP) if for all z 2 S n

k restricted
isometry
property

(1� ✓)kzk
2

 kLzk
2

 (1 + ✓)kzk
2

. (2.28)

We say that L is (k, ✓)-RIP.

Given a (k, ✓)-RIP matrix L, can we recover z 2 S n
k from Lz? And how

small can d be? The next two claims answer these questions.
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Figure 2.7: Because `1 balls (in orange) have corners, minimizing the `1 norm
over a linear subspace (in green) tends to produce sparse solutions.

Claim 2.37. Let L be (10k, 1/3)-RIP. Then:

1. (Sparse case) For any x 2 S n
k , the unique solution to the following mini-

mization problem

min

z2Rn
kzk

1

subject to Lz = Lx, (2.29)

is z⇤
= x.

2. (Almost sparse case) For any x 2 Rn with ⌘(x) := min

x

02S n
k
kx � x

0k
1

,
the solution to (2.29) satisfies kz⇤ � xk

2

= O(⌘(x)/
p
k).

Claim 2.38. Let A be a d ⇥ n matrix whose entries are i.i.d. N(0, 1) and let L =

1p
d
A. There is a constant 0 < C < +1 such that if d � Ck log n then L is

(k, 1/3)-RIP with probability at least 1� 1/n.

Roughly speaking, a restricted isometry preserves enough of the structure of
S n

k to be invertible on its image. The purpose of the `1 minimization in (2.29) is
to promote sparsity. See Figure 2.7 for an illustration. It may seem that a more nat-
ural approach is to minimize the number of non-zero entries in z. However the ad-
vantage of `1 minimization is that it can be formulated as a linear program, i.e., the
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minimization of a linear objective subject to linear inequalities. This permits much
faster computation of the solution using standard techniques. See Exercise 2.9.

In Claim 2.38, note that d is much smaller than n and not far from the 2k
bound we derived above. Note also that Claim 2.38 does not follow immediately
from the Johnson-Lindenstrauss lemma. Indeed that lemma shows that a matrix
with i.i.d. Gaussian entries is an approximate isometry on a finite set of points.
Here we need a linear mapping that is an approximate isometry for all vectors in
S n

k . The proof of this stronger statement uses an important trick, a so-called "-net
argument.

"-nets We start with the proof of Claim 2.38. For a subset of indices J ✓ [n] and
a vector y 2 Rn, we let yJ be the vector y restricted to the entries in J , i.e., the sub-
vector (yi)i2I . Fix a subset of indices I ✓ [n] of size k. As we mentioned above,
the Johnson-Lindenstrauss lemma only applies to a finite collection of vectors.
However we need the RIP condition to hold for all z 2 Rn with non-zero entries
in I (and all such I). The way out is to notice that, for z 6= 0, the function
kLzk

2

/kzk
2

1. does not depend on the norm of z, so that we can restrict ourselves to the
compact set @BI := {z : z

[n]\I = 0, kzk
2

= 1}, and

2. is continuous on @BI , so that it suffices to construct a fine enough covering
of @BI by a finite collection of balls and apply the Johnson-Lindenstrauss
lemma to the centers of these balls.

To elaborate on the last point, which is known as an "-net argument, we make the
following definition.

Definition 2.39 ("-net). Let S be a subset of a metric space (M, ⇢) and let " > 0.
The collection of points N ✓ S is called an "-net of S if all distinct pairs of points

"-net
in N are at distance at least " and N is maximal by inclusion in S. In particular
for all z 2 S, infy2N ⇢(z, y)  ".

For 0 < " < 1, let N be an "-net of the sphere of radius 1 in Rk. We can
construct an "-net by starting with N = ; and successivley adding a point to N
at distance at least " from all other previous points until that is not possible. We
claim that |N |  (3/")k. Indeed the balls of radius "/2 around points in N are
disjoint by definition and are included in the ball of radius 3/2 around the origin.
The volume of the former is ⇡k/2

("/2)k

�(k/2+1)

and that of the latter is ⇡k/2
(3/2)k

�(k/2+1)

. Dividing
one by the other proves the claim.
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Proof of Claim 2.38. Let I ✓ [n] be a subset of indices of size k. There are
�

n
k

� 
nk

= exp(k log n) such subsets and we denote their collection by
�

[n]
k

�

. We let
NI be an "-net of @BI . The proof strategy is to apply the Johnson-Lindenstrauss
lemma to each NI , I 2 �

[n]
k

�

, and use a continuity argument to extend the RIP
property to all k-sparse vectors.

- Continuity argument. We first choose an appropriate value for ". Let A⇤ be
the largest entry of A in absolute value. For all y 2 NI and all z 2 @BI

within distance " of y, by the triangle inequality, we have kLzk
2

 kLyk
2

+

kL(z � y)k
2

and kLzk
2

� kLyk
2

� kL(z � y)k
2

. Moreover

kL(z � y)k2
2

=

d
X

i=1

0

@

n
X

j=1

Lij(zj � yj)

1

A

2


d
X

i=1

0

@

n
X

j=1

L2

ij

1

A

0

@

n
X

j=1

(zj � yj)
2

1

A

 kz � yk2
2

· dn
✓

1p
d
A⇤
◆

2

 ("A⇤
)

2n,

where we used Cauchy-Schwarz. It remains to bound A⇤. For this we use
the Chernoff-Cramér bound for Gaussians in (2.24) which implies

P
h

9i, j, |Aij | � C
p

log n
i

 n2e�(

p
C logn)2/2  1

2n
, (2.30)

for a C > 0 large enough. Hence we take

" =
1

C
p
6n log n

,

and, assuming that the event in (2.30) does not hold, we get

|kLzk
2

� kLyk
2

|  1

6

. (2.31)

- Applying Johnson-Lindenstrauss to the "-net. By the argument above,

|{NI}I |  nk

✓

3

"

◆k

 exp(C 0k log n),
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for some C 0 > 0. Apply the Johnson-Lindenstrauss lemma to {NI}I with
✓ = 1/6, � =

1

2n , and

d =

8

3

✓�2

✓

log |{NI}I |+ 1

2

log(2n)

◆

= ⇥(k log n).

Then

5

6

=

5

6

kyk
2

 kLyk
2

 7

6

kyk
2

=

7

6

, 8I, 8y 2 NI . (2.32)

Assuming (2.31) and (2.32) hold, an event of probability at least 1�2(1/2n) =
1� 1/n, we finally get

2

3

 kLzk
2

 4

3

, 8I, 8z 2 @BI .

That concludes the proof.

`1 minimization It remains to prove Claim 2.37.

Proof of Claim 2.37. We only prove the sparse case x 2 S n
k . For the almost

sparse case, see Exercise 2.10. Let z⇤ be a solution to (2.29) and note that such
a solution exists because z = x satisfies the constraint in (2.29). W.l.o.g. assume
that only the first k entries of x are non-zero, i.e., x

[n]\[k] = 0. Moreover order the
remaining entries of x so that the residual r = z

⇤ � x is so that the entries r
[n]\[k]

are non-increasing in absolute value. Our goal is to show that krk
2

= 0.
In order to leverage the RIP condition, we break up the vector r into 9k-long

sub-vectors. Let

I
0

= [k], Ii = {(9(i� 1) + 1)k + 1, . . . , (9i+ 1)k}, 8i � 1,

and let I
01

= I
0

[ I
1

, ¯Ii =
S

j>i Ij and ¯I
01

=

¯I
1

.
We first use the optimality of z⇤. Note that x

¯I0 = 0 implies that

kz⇤k
1

= kz⇤
I0k1 + kz⇤

¯I0
k
1

= kz⇤
I0k1 + kr

¯I0k1
and

kxk
1

= kxI0k1  kz⇤
I0k1 + krI0k1

by the triangle inequality. Since kz⇤k
1

 kxk
1

we then have

kr
¯I0k1  krI0k1. (2.33)
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On the other hand, the RIP condition gives a similar inequality in the other
direction. Indeed notice that Lr = 0 or LrI01 = �Pi�2

LrIi by the constraint
in (2.29). Then, by the RIP condition and the triangle inequality, we have that

2

3

krI01k2  kLrI01k2 
X

i�2

kLrIik2 
4

3

X

i�2

krIik2. (2.34)

We note that by the ordering of the entries of x

krIi+1k22  9k

✓krIik1
9k

◆

2

, (2.35)

where we bounded rIi+1 entrywise by the expression in parenthesis. Combin-
ing (2.33) and (2.35), and using that krI0k1  p

kkrI0k2 by Cauchy-Schwarz, we
have

X

i�2

krIik2 
X

j�1

krIjk1p
9k

=

kr
¯I0k1

3

p
k

 krI0k1
3

p
k

 krI0k2
3

 krI01k2
3

.

Plugging this back into (2.34) gives

krI01k2  2

X

i�2

krIik2 
2

3

krI01k2,

which implies rI01 = 0. In particular rI0 = 0 and, by (2.33), r
¯I0 = 0 as well. We

have shown that r = 0 or z⇤
= x.

Remark 2.40. Claim 2.37 can be extended to noisy measurements (using a slight modifi-
cation of (2.29)). See [CRT06b].

2.3.3 . Information theory: Shannon’s theorem

To be written. See [AS11, Section 14.1] or [MU05, Section 9.5].

2.3.4 . Markov chains: Varopoulos-Carne, and a bound on mixing

For simple random walk on Z, the Chernoff-Cramér method gives the following
bound.

Theorem 2.41 (Chernoff bound for simple random walk on Z). Let Z
1

, . . . , Zn be
independent {�1, 1}-valued random variables with P[Zi = 1] = P[Zi = �1] =

1/2. Let Sn =

P

in Zi. Then, for any � > 0,

P[Sn � �]  e��2/2n.

43



Proof. Rather than using our result for binomial variables, we argue directly. The
moment-generating function of Z

1

can be bounded as follows

MZ1(s) =
es + e�s

2

=

X

j�0

s2j

(2j)!

X

j�0

(s2/2)j

j!
= es

2/2.

Taking s = �/n in the Chernoff-Cramér bound we get

P[Sn � �]  exp (�s� + n Z1(s))  e��2/2n,

which concludes the proof.

Example 2.42 (Set balancing). This is a variant of the balancing vectors problem
of Example 2.1. Let v

1

, . . . ,vm be arbitrary non-zero vectors in {0, 1}n. Think
of the vis as representing subsets of a set S of m elements. We want to partition
S into two groups such that the subsets corresponding to the vis are as balanced
as possible. That is, we seek a vector x = (x

1

, . . . , xn) 2 {�1,+1}n such that
B⇤

= maxi=1,...,m |x · vi| is as small as possible. Once again we select each xi
independently, uniformly at random in {�1,+1}. Fix " > 0. We claim that

P
h

B⇤ �
p

2n(logm+ log(2"�1

))

i

 ".

By Theorem 2.41 (considering only the non-zero entries of vi),

P
h

|x · vi| �
p

4n logm
i

 2 exp

✓

�2n(logm+ log(2"�1

))

2kvik1

◆

 "

m
,

where we used kvik1  n. Taking a union bound over the m vectors gives the
result. J

If (St) is simple random walk on Z, then Theorem 2.41 implies that for any
x, y 2 Z

P t
(x, y)  e�|x�y|2/2t, (2.36)

where P is the transition matrix of (St).

Varopoulos-Carne Interestingly a bound similar to (2.36) holds for any reversible
Markov chain. And Theorem 2.41 plays an unexpected role in its proof. An appli-
cation to mixing times is discussed below.

Theorem 2.43 (Varopoulos-Carne bound). Let P be the transition matrix of an
irreducible Markov chain (Xt) on the countable state space V . Assume further that
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P is reversible with respect to the stationary measure ⇡ and that the corresponding
network N is locally finite. Then the following hold

8x, y 2 V, 8t 2 N, P t
(x, y)  2

s

⇡(y)

⇡(x)
e�⇢(x,y)2/2t,

where ⇢(x, y) is the graph distance between x and y on N .

For a sanity check before proving the theorem, note that if the chain is aperiodic
and ⇡ is a stationary distribution then

P t
(x, y) ! ⇡(y)  2

s

⇡(y)

⇡(x)
, as t ! +1,

since ⇡(x),⇡(y)  1.

Proof of Theorem 2.43. The idea of the proof is to show that

P t
(x, y)  2

s

⇡(y)

⇡(x)
P[St � ⇢(x, y)],

where St is simple random walk on Z started at 0, and use Theorem 2.41.
By assumption only a finite number of states can be reached by time t. Hence

we can reduce the problem to a finite state space. More precisely, let ˜V = {z 2
V : ⇢(x, z)  t} and

˜P (z, w) =

(

P (z, w), if u 6= v

P (z, z) + P (z, V � ˜V ), otherwise.

By construction ˜P is reversible with respect to ⇡̃ = ⇡/⇡( ˜V ) on ˜V . Because in time
t one never reaches a state z where P (z, V � ˜V ) > 0, by Chapman-Kolmogorov
and using the fact that ⇡̃(y)/⇡̃(x) = ⇡(y)/⇡(x), it suffices to prove the result for
˜P . Hence we assume without loss of generality that V is finite with |V | = n.

To relate (Xt) to simple random walk on Z, we use a special representation of
P t based on Chebyshev polynomials. For ⇠ = cos ✓ 2 [�1, 1], Tk(⇠) = cos k✓ is
a Chebyshev polynomial of the first kind. Note that |Tk(⇠)|  1 on [�1, 1]. The

Chebyshev
polynomials

classical trigonometric identity (to see this, write it in complex form)

cos((k + 1)✓) + cos((k � 1)✓) = 2 cos ✓ cos(k✓)

implies the recursion
Tk+1

(⇠) + Tk(⇠) = 2⇠ Tk(⇠),
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which in turn implies that Tk is indeed a polynomial. It has degree k from induction
and the fact that T

0

(⇠) = 1 and T
1

(⇠) = ⇠. The connection to simple random walk
on Z comes from the following somewhat miraculous representation (which does
not rely on reversibility). Let Tk(P ) denote the polynomial Tk evaluated at P as a
matrix polynomial.

Lemma 2.44.

P t
=

t
X

k=�t

P[St = k]T|k|(P ).

Proof. It suffices to prove

⇠t =
t
X

k=�t

P[St = k]T|k|(⇠),

as an identity of polynomials. Since P[St = k] = 2

�t
�

t
(t+k)/2

�

for |k|  t of the
same parity as t (and 0 otherwise), this follows immediately from the expansion

⇠t =

✓

ei✓ + e�i✓

2

◆t

=

t
X

`=0

2

�t

✓

t

`

◆

(ei✓)`(e�i✓
)

t�`
=

t
X

k=�t

P[St = k]eik✓,

where we used that the probability of St = �t + 2` = (+1)` + (�1)(t � `)
is the probability of making ` steps to the right and t � ` steps to the left. (Put
differently, (cos ✓)t is the characteristic function of St.) Take real parts and use
cos(k✓) = cos(�k✓).

We bound Tk(P )(x, y) as follows.

Lemma 2.45.
Tk(P )(x, y) = 0, 8k < ⇢(x, y).

and

Tk(P )(x, y) 
s

⇡(y)

⇡(x)
, 8k � ⇢(x, y).

Proof. Note that Tk(P )(x, y) = 0 when k < ⇢(x, y) because Tk(P )(x, y) is a
function of the entries P `

(x, y) for `  k.
Let f

1

, . . . , fn be a right eigenvector decomposition of P orthonormal with
respect to the inner product

hf, gi⇡ =

X

x2V
⇡(x)f(x)g(x),
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with eigenvalues �
1

, . . . ,�n 2 [�1, 1]. Such a decomposition exists by the re-
versibility of P . See Lemma ??. Then f

1

, . . . , fn is also an eigenvector decom-
position of the polynomial Tk(P ) with eigenvalues Tk(�1

), . . . , Tk(�n) 2 [�1, 1]
by the definition of Chebyshev polynomials. By decomposing any f =

Pn
i=1

↵ifi
according to this eigenbasis, that implies that

kTk(P )fk2⇡ =

n
X

i=1

↵2

i Tk(�i)
2hfi, fii⇡ 

n
X

i=1

↵2

i hfi, fii⇡ = kfk2⇡, (2.37)

where we used the norm kfk⇡ associated with the inner product h·, ·i⇡, the or-
thonormality of the eigenvector basis under this inner product, and the fact that
Tk(�i)

2 2 [0, 1].
Let �x denote the point mass at x. By Cauchy-Schwarz and (2.37),

Tk(P )(x, y) =
h�x, Tk(P )�yi⇡

⇡(x)
 k�xk⇡k�yk⇡

⇡(x)
=

p

⇡(x)
p

⇡(y)

⇡(x)
=

s

⇡(y)

⇡(x)
,

for k � ⇢(x, y).

Combining the two lemmas gives the result.

Remark 2.46. The local finiteness assumption is made for simplicity only. The result holds
for any countable-space, reversible chain. See [LP, Section 13.2].

Lower bound on mixing Let (Xt) be an irreducible, aperiodic Markov chain
with finite state space V and stationary distribution ⇡. Recall that, for a fixed
0 < " < 1/2, the mixing time is

t

mix

(") = min{t : d(t)  "},
where

d(t) = max

x2V
kP t

(x, · )� ⇡k
TV

.

It is intuitively clear that t
mix

(") is at least of the order of the “diameter” of the
transition graph of P . For x, y 2 V , let ⇢(x, y) be the graph distance between x
and y on the undirected version of the transition graph, i.e., ignoring the orientation
of the edges. With this definition, a shortest directed path from x to y contains at
least ⇢(x, y) edges. Here we define the diameter of the transition graph as � :=

diameter
maxx,y2V ⇢(x, y). Let x

0

, y
0

be a pair of vertices achieving the diameter. Then we
claim that P b(��1)/2c

(x
0

, · ) and P b(��1)/2c
(y

0

, · ) are supported on disjoint sets.
To see this let

A = {z 2 S : ⇢(x
0

, z) < ⇢(y
0

, z)}.
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Figure 2.8: The supports of P b(��1)/2c
(x

0

, · ) and P b(��1)/2c
(y

0

, · ) are contained
in A and Ac respectively.

See Figure 2.3.4. By the triangle for ⇢, any z such that ⇢(x
0

, z)  b(� � 1)/2c
is in A, otherwise we would have ⇢(y

0

, z)  ⇢(x
0

, z)  b(� � 1)/2c and hence
⇢(x

0

, y
0

)  ⇢(x
0

, z) + ⇢(y
0

, z)  2b(� � 1)/2c < �. Similarly, if ⇢(y
0

, z) 
b(��1)/2c, then z 2 Ac. By the triangle inequality for the total variation distance,

d(b(�� 1)/2c) � 1

2

�

�

�

P b(��1)/2c
(x

0

, · )� P b(��1)/2c
(y

0

, · )
�

�

�

TV

� 1

2

n

P b(��1)/2c
(x

0

, A)� P b(��1)/2c
(y

0

, A)
o

=

1

2

{1� 0} =

1

2

, (2.38)

so that:

Claim 2.47.
t

mix

(") � �

2

.

This bound is often far from the truth. Consider for instance simple random
walk on a cycle of size n. The diameter is � = n/2. But Theorem 2.41 suggests
that it takes time of order �2 to reach the antipode of the starting point. More
generally, when P is reversible, we use the Varopoulos-Carne bound to show that
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the mixing time does indeed scale at least as the square of the diameter. Assume
that P is reversible with respect to ⇡ and has diameter �. Letting n = |V | and
⇡
min

= minx2V ⇡(x), we have the following.

Claim 2.48.

t

mix

(") � �

2

12 log n+ 4| log ⇡
min

| , if n � 16

(1� 2")2
.

Proof. The proof is based on the same argument we used to derive our first diameter-
based bound, except that the Varopoulos-Carne bound gives a better dependence
on the diameter. Namely, let x

0

, y
0

, and A be as above. By the Varopoulos-Carne
bound,

P t
(x

0

, Ac
) =

X

z2Ac

P t
(x

0

, z) 
X

z2Ac

2

s

⇡(z)

⇡(x
0

)

e�
⇢2(x0,z)

2t  2n⇡�1/2
min

e�
�2

8t ,

where we used that |Ac|  n and ⇢(x
0

, z) � �

2

for z 2 Ac. For any

t <
�

2

12 log n+ 4| log ⇡
min

| ,

we get that

P t
(x

0

, Ac
)  2n⇡�1/2

min

exp

✓

�3 log n+ | log ⇡
min

|
2

◆

=

2p
n
.

Similarly, P t
(y

0

, A)  2p
n

so that arguing as in (2.38)

d(b(�� 1)/2c) � 1

2

⇢

1� 2p
n
� 2p

n

�

=

1

2

� 2p
n
� ",

for n as in the statement.

Remark 2.49. The dependence on� and ⇡min in Claim 2.48 cannot be improved. See [LP,
Section 13.3].

2.3.5 Hoeffding’s and Bennett’s inequalities

The bounds in Section 2.3 were obtained by computing the moment-generating
function explicitly. This is seldom possible. In this section, we give a few more ex-
amples of concentration inequalities derived from the Chernoff-Cramér method for
broad classes of random variables under natural conditions on their distributions.
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Sub-Gaussian variables We say that a centered random variable X is sub-Gauss-
ian with variance factor ⌫ > 0 if for all s 2 R

 X(s)  s2⌫

2

,

which is denoted by X 2 G(⌫). Note that the r.h.s. is the cumulant-generating
function of a N(0, ⌫). By the Chernoff-Cramér method and (2.23) it follows im-
mediately that

P [X  ��] _ P [X � �]  exp

✓

��2

2⌫

◆

, (2.39)

where we used that X 2 G(⌫) implies �X 2 G(⌫).

Hoeffding’s inequality For bounded random variables, the following tail in-
equality holds.

Theorem 2.50 (Hoeffding’s inequality). Let X
1

, . . . , Xn be independent random
variables where, for each i, Xi takes values in [ai, bi] with �1 < ai  bi < +1.
Let Sn =

P

inXi. For all t > 0,

P[Sn � ESn � t]  exp

 

� 2t2
P

in(bi � ai)2

!

.

We first give a quick proof of a weaker version. Suppose the Xis are centered
and satisfy |Xi|  ci for some ci > 0. To estimate the moment-generating function
of Xi, observe that on x 2 [�c, c]

esx  esc + e�sc

2

+

esc � e�sc

2

⇣x

c

⌘

,

as the r.h.s. is the line through e�sc and esc. So, by a Taylor expansion and using
EXi = 0, we have the bound

E
⇥

esXi
⇤  cosh(sci) =

X

k�0

(sci)2k

(2k)!

X

k�0

((sci)2)k

2

kk!
= e(sci)

2/2,

that is, Xi is sub-Gaussian with variance factor c2i . By independence, Sn is sub-
Gaussian with variance factor

P

in c
2

i . Finally, by (2.39),

P[Sn � t]  exp

 

� t2

2

P

in c
2

i

!

.
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Proof of Theorem 2.50. The idea of the proof is to establish that Sn � ESn is sub-
Gaussian with variance factor 1

4

P

in(bi � ai)2. The tail bound then follows
from (2.39). Because

 Sn�ESn(s) =
X

in

 Xi�EXi(s),

it suffices in fact to show that Xi � EXi is sub-Gaussian with variance factor
1

4

(bi � ai)2. This follows from the next lemma.

Lemma 2.51 (Hoeffding’s lemma). Let X be a random variable taking values in
[a, b] for �1 < a  b < +1. Then X � EX 2 G �1

4

(b� a)2
�

.

Proof. Note first that X�EX 2 [a�EX, b�EX] and 1

4

((b�EX)�(a�EX))

2

=

1

4

(b�a)2. So w.l.o.g. we assume EX = 0. Because X is bounded, MX(s) is finite
for all s 2 R. From standard results on moment-generating functions (e.g., [Bil12,
Section 21]; see also [Dur10, Theorem A.5.1]), for any k 2 Z,

M (k)
X (s) = E

h

XkesX
i

.

Hence

 X(0) = logMX(0) = 0,  

0
X(0) =

M 0
X(0)

MX(0)

= EX = 0,

and by a Taylor expansion

 X(s) =  X(0) + s 0
X(0) +

s2

2

 

00
X(s⇤) =

s2

2

 

00
X(s⇤),

for some s⇤ 2 [0, s]. Therefore it suffices to show that for all s

 

00
X(s)  1

4

(b� a)2. (2.40)

Note that

 

00
X(s) =

M 00
X(s)

MX(s)
�
✓

M 0
X(s)

MX(s)

◆

2

=

1

MX(s)
E
⇥

X2esX
⇤�

✓

1

MX(s)
E
⇥

XesX
⇤

◆

2

= E


X2

esX

MX(s)

�

�
✓

E


X
esX

MX(s)

�◆

2

.
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The trick to conclude is to notice that esx

MX(s) defines a density (i.e., a Radon-
Nikodym derivative) on [a, b] with respect to the law of X . The variance under
this density—the last line above—must be less than 1

4

(b � a)2. Indeed for any
random variable Z taking values in [a, b] we have

�

�

�

�

Z � a+ b

2

�

�

�

�

 b� a

2

,

and

Var[Z] = Var



Z � a+ b

2

�

 E
"

✓

Z � a+ b

2

◆

2

#


✓

b� a

2

◆

2

.

This establishes (2.40) and concludes the proof.

Remark 2.52. The change of measure above is known as tilting and is a standard trick in
large deviation theory. See, e.g., [Dur10, Section 2.6].

Bennett’s inequality To be written. See [BLM13, Section 2.7] or [Lug, Section
3.2].

2.3.6 . Knapsack: probabilistic analysis

To be written. See [FR98, Section 5.3].

2.4 Matrix tail bounds

The Chernoff-Cramér method has several important extensions. We will discuss a
martingale version in Section 3.2. Here we consider the case of sums of indepen-
dent random matrices. That such an extension is possible is surprising because a
key step in the Chernoff-Cramér bound, that exponentials of sums are products of
exponentials, fails to hold for matrices. That is, in general

eA+B 6= eAeB,

unless A and B commute.
To be written. See [Har, Lectures 12, 13, 15].
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2.4.1 Ahlswede-Winter inequality

2.4.2 . Randomized algorithms: low-rank approximations

Exercises

Exercise 2.1 (Bonferroni inequalities). Let A
1

, . . . , An be events and Bn := [iAi.
Define

S(r)
:=

X

1i1<···<irn

P[Ai1 \ · · · \Air ],

and

Xn :=

n
X

i=1

Ai .

a) Let x
0

 x
1

 · · ·  xs � xs+1

� · · · � xm be a unimodal sequence of
non-negative reals such that

Pm
j=0

(�1)

jxj = 0. Show that
P`

j=0

(�1)

jxj
is � 0 for even ` and  0 for odd `.

b) Show that, for all r,

X

1i1<···<irn

Ai1 Ai2
· · · Air

=

✓

Xn

r

◆

.

c) Use a) and b) to show that when ` 2 [n] is odd

P[Bn] 
X̀

r=1

(�1)

r�1S(r),

and when ` 2 [n] is even

P[Bn] �
X̀

r=1

(�1)

r�1S(r).

These inequalities are called Bonferroni inequalities. The case ` = 1 is
Boole’s inequality.

Exercise 2.2 (Percolation on Z2: better bound [Ste]). Let E
1

be the event that all
edges are open in [�N,N ] ⇥ [�N,N ] and E

2

be the event that there is no closed
self-avoiding dual cycle surrounding [�N,N ]

2. By looking at E
1

\E
2

, show that
✓(p) > 0 for p > 2/3.
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Exercise 2.3 (Percolation on Zd: phase transition). Consider bond percolation on
Ld.

a) Show that pc(Ld
) > 0. [Hint: Count self-avoiding paths.]

b) Show that pc(Ld
) < 1. [Hint: Use the result for L2.]

Exercise 2.4 (Sums of uncorrelated variables). Centered random variables X
1

, . . . , Xn

are pairwise uncorrelated if
pairwise
uncorrelated
variables

E[XrXs] = 0, 8r 6= s.

Assume further that Var[Xr]  C < +1 for all r. Show that

P

2

4

1

n

X

rn

Xr � �

3

5  C2

�2n
.

Exercise 2.5 (Pairwise independence: lack of concentration [LW06]). Let U =

(U
1

, . . . , U`) be uniformly distributed over {0, 1}`. Let n = 2

` � 1. For all v 2
{0, 1}`\0, define

X
v

= (U · v) mod 2.

a) Show that the random variables X
v

, v 2 {0, 1}`\0, are uniformly dis-
tributed in {0, 1} and pairwise independent.

b) Show that for any event A measurable with respect to �(X
v

,v 2 {0, 1}`\0),
P[A] is either 0 or � 1/(n+ 1).

Exercise 2.4 shows that pairwise independence implies “polynomial concentra-
tion” of the average of square-integrable X

v

s. On the other hand, the current ex-
ercise suggests that in general pairwise independence cannot imply “exponential
concentration.”

Exercise 2.6 (Chernoff bound for Poisson trials). Using the Chernoff-Cramér method,
prove part (a) of Theorem 2.32. Show that part (b) follows from part (a).

Exercise 2.7 (A proof of Pólya’s theorem). Let (Xt) be simple random walk on
Ld started at the origin 0.

a) For d = 1, use Stirling’s formula to show that P
0

[X
2n = 0] = ⇥(n�1/2

).

b) For j = 1, . . . , d, let N (j)
t be the number of steps in the j-th coordinate by

time t. Show that

P


N (j)
n 2



n

2d
,
3n

2d

�

, 8j
�

� 1� exp(�dn),

for some constant d > 0.
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c) Use a) and b) to show that, for any d � 1, P
0

[X
2n = 0] = ⇥(n�d/2

).

Exercise 2.8 (RIP v. orthogonality). Show that a (k, 0)-RIP matrix with k � 2 is
orthogonal, i.e., its columns are orthonormal.

Exercise 2.9 (Compressed sensing: linear programming formulation). Formulate (2.29)
as a linear program, i.e., the minimization of a linear objective subject to linear in-
equalities.

Exercise 2.10 (Compressed sensing: almost sparse case). Prove the almost sparse
case of Claim 2.37 by adapting the proof of the sparse case.

Exercise 2.11 (Poisson convergence: method of moments). Let A
1

, . . . , An be
events and A := [iAi. Define

S(r)
:=

X

1i1<···<irn

P[Ai1 \ · · · \Air ],

and

Xn :=

n
X

i=1

Ai.

Assume that there is µ > 0 such that, for all r,

S(r) ! µr

r!
.

Use Exercise 2.1 and a Taylor expansion of e�µ to show that

P[Xn = 0] ! e�µ.

In fact, Xn
d! Poi(µ) (no need to prove this). This is a special case of the method

of moments. See e.g. [Dur10, Section 3.3.5] and [JLR11, Section 6.1].

Exercise 2.12 (Connectivity: critical window). Using Exercise 2.11 show that,
when pn =

logn+s
n , the probability that an Erdös-Rényi graph Gn ⇠ Gn,pn con-

tains no isolated vertex converges to e�e�s .

Bibliographic remarks

Section 2.1 The examples in Section 2.1.1 are taken from [AS11, Sections 2.4,
3.2]. A fascinating account of the longest increasing subsequence problem is given
in [Rom14], from which the material in Section 2.1.3 is taken. The contour lemma,
Lemma 2.12, is attributed to Whitney [Whi32] and is usually proved “by pic-
ture” [Gri10a, Figure 3.1]. A formal proof of the lemma can be found in [Kes82,
Appendix A]. For much more on percolation, see [Gri10b]. A gentler introduction
is provided in [Ste].
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Section 2.2 The presentation in Section 2.2.2 follows [AS11, Section 4.4] and
[JLR11, Section 3.1]. The result for general subgraphs is due to Bollobás [Bol81].
A special case (including cliques) was proved by Erdös and Rényi [ER60]. For
variants of the small subgraph containment problem involving copies that are in-
duced, disjoint, isolated etc., see e.g. [JLR11, Chapter 3]. For corresponding re-
sults for larger graphs, such as cycles or matchings, see e.g. [Bol01]. The result
in that section is due to Erdös and Rényi [ER60]. The connectivity threshold in
Section 2.2.3 is also due to the same authors [ER59]. The presentation here fol-
lows [vdH14, Section 5.2]. Theorem 2.29 is due to R. Lyons [Lyo90].

Section 2.3 The use of the moment-generating function to derive tail bounds for
sums of independent random variables was pioneered by Cramér [Cra38], Bern-
stein [Ber46], and Chernoff [Che52]. For much more on concentration inequalities,
see e.g. [BLM13]. The basics of large deviation theory are covered in [Dur10, Sec-
tion 2.6]. See also [RAS] and [DZ10]. The presentation in Section 2.3.2 is based
on [Har, Lectures 6 and 8] and [Tao]. The Johnson-Lindenstrauss lemma was first
proved by Johnson and Lindenstrauss using non-probabilistic arguments [JL84].
The idea of using random projections to simplify the proof was introduced by
Frankl and Maehara [FM88] and the proof presented here based on Gaussian pro-
jections is due to Indyk and Motwani [IM98]. See [Ach03] for an overview of the
various proofs known. For more on the random projection method, see [Vem04].
For algorithmic applications of the Johnson-Lindenstrauss lemma, see e.g. [Har,
Lecture 7]. Compressed sensing emerged in the works of Donoho [Don06] and
Candès, Romberg and Tao [CRT06a, CRT06b]. The restricted isometry property
was introduced by Candès and Tao [CT05]. Claim 2.37 is due to Candés, Romberg
and Tao [CRT06b]. The proof of Claim 2.38 presented here is due to Baraniuk et
al. [BDDW08]. A survey of compressed sensing can be found in [CW08]. The
presentation in Section 2.3.4 follows [KP, Section 3] and [LP, Section 13.3]. The
Varopoulos-Carne bound is due to Carne [Car85] and Varopoulos [Var85]. For a
probabilistic approach to the Varopoulos-Carne bound see Peyre’s proof [Pey08].
The application to mixing times is from [LP]. The material in Section 2.3.5 can
be found in [BLM13, Chapter 2]. Hoeffding’s lemma and inequality are due to
Hoeffding [Hoe63]. Bennett’s inequality is due to Bennett [Ben62].
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