
Chapter 3

Martingale techniques

Martingales are a central tool in probability theory. In this chapter we illustrate
their use, as well as some related concepts, on a number of applications in discrete
probability. We begin with a quick review.

3.1 Background

To be written. See [Dur10, Sections 4.1, 5.2, 5.7].

3.1.1 Stopping times

3.1.2 . Markov chains: exponential tail of hitting times, and some cover
time bounds

To be written. See [AF, Sections 2.4.3 and 2.6].

3.1.3 Martingales

3.1.4 . Percolation on trees: critical regime

To be written. See [Per09, Sections 2 and 3].

3.2 Concentration for martingales

The Chernoff-Cramér method extends naturally to martingales. This observation
leads to powerful concentration inequalities that apply beyond the case of sums of
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independent variables.⇤

3.2.1 Azuma-Hoeffding inequality

The main result of this section is the following generalization of Hoeffding’s in-
equality, Theorem 2.50.

Theorem 3.1 (Azuma-Hoeffding inequality). Let (Zt)t2Z+ be a martingale with
respect to the filtration (Ft)t2Z+ . Assume that (Zt) has bounded increments, i.e.,

bounded
increments

there are finite, nonnegative constants (ct) such that for all t � 1, almost surely,

|Zt � Zt�1

|  ct.

Then for all � > 0

P[Zt � EZt � �]  exp
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Applying this inequality to (�Zt) gives a tail bound in the other direction.

Proof of Theorem 3.1. Because (Zt�Z
0

)t = (Zt�EZt)t is also a martingale with
bounded increments we assume w.l.o.g. that Z

0

= 0. As in the Chernoff-Cramér
method, we start by applying (the exponential version of) Markov’s inequality
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This time, however, the terms of the sum in the exponent are not independent.
Instead, to exploit the martingale property, we condition on the filtration
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The bounded increments property implies that, conditioned on Ft�1

, the random
variable Zt � Zt�1

lies in an interval of length 2ct. Hence by Hoeffding’s lemma,
Lemma 2.51, it holds almost surely that
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Arguing by induction, we obtain
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⇤Requires: Section 2.3.5.
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and choosing s = �/
P

rt c
2

r in (3.1) gives the result. Put differently, we have
proved that Zt is sub-Gaussian with variance factor

P

rt c
2

r .

In Theorem 3.1 the martingale differences (Xt), where Xt := Zt � Zt�1

, are
martingale
differences

not only pairwise uncorrelated by Lemma ??, i.e.,

E[XsXr] = 0, 8r 6= s,

but by the same argument they are in fact “mutually uncorrelated,”

E [Xj1 · · ·Xjk ] = 0, 8 k � 1, 8 1  j
1

< · · · < jk.

This much stronger property perhaps helps explain why
P

rtXr is highly con-
centrated. This point is the subject of Exercise 3.1, which guides the reader through
a slightly different proof of the Azuma-Hoeffding inequality. Compare with Exer-
cises 2.4 and 2.5.

3.2.2 Method of bounded differences

The power of the Azuma-Hoeffding inequality is that it produces tail inequalities
for quantities other than sums of independent variables.

McDiarmid’s inequality The following useful corollary, which illustrates this
point, is referred to as the method of bounded differences. It also goes under the
name of McDiarmid’s inequality. First a definition:

Definition 3.2 (Lipschitz condition). We say that the function f : X
1

⇥ · · ·⇥Xn !
R is c-Lipschitz if for all i = 1, . . . , n and all (x

1

, . . . , xn) 2 X
1

⇥ · · ·⇥ Xn Lipschitz
conditionsup

y,y02Xi

�

�f(x
1

, . . . , xi�1

, y, xi+1

, . . . , xn)� f(x
1

, . . . , xi�1

, y0, xi+1

, . . . , xn)
�

�  c.

To see the connection with the usual definition of Lipschitz continuity, note that
f above is Lipschitz continuous with Lipschitz constant c if one uses the Euclidean
metric on R and the product (discrete) metric

⇢(x, x0) :=
n
X

i=1

{xi 6=x0
i},

for x, x0 2 X
1

⇥ · · ·⇥ Xn.
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Corollary 3.3 (Method of bounded differences). Let X
1

, . . . , Xn be independent
random variables where Xi is Xi-valued for all i, and let X = (X

1

, . . . , Xn).
Assume f : X

1

⇥ · · ·⇥Xn ! R is a measurable function that is c-Lipschitz. Then
for all b > 0

P[f(X)� Ef(X) � �]  exp

✓

�2�2

c2n

◆

.

Once again, applying the inequality to �f gives a tail bound in the other direc-
tion.

Proof of Corollary 3.3. Note that by the Lipschitz condition the function f is boun-
ded, as for any x, x⇤ 2 X

1

⇥ · · ·⇥ Xn,

|f(x)|  |f(x⇤)|+ nc =: B⇤,

so that E|f(X)|  B⇤ < +1. The idea of the proof is to consider the Doob
martingale

Doob martingale
Zi = E[f(X) | Fi],

where Fi = �(X
1

, . . . , Xi), and apply the Azuma-Hoeffding inequality. Indeed,
note that Zn = E[f(X) | Fn] = f(X) and Z

0

= E[f(X)], and the result will
follow once we show that the martingale (Zi) has bounded increments.

Lemma 3.4 (Lipschitz condition =) bounded increments). Let X
1

, . . . , Xn

be independent random variables where Xi is Xi-valued for all i, and let X =
(X

1

, . . . , Xn). Let Fi = �(X
1

, . . . , Xi) be the corresponding filtration. Assume
f : X

1

⇥ · · ·⇥Xn ! R is a measurable function that is c-Lipschitz. Then the Doob
martingale Zi = E[f(X) | Fi] has bounded increments with bound c.

Proof. Let X 0
i be an independent copy of Xi, and let

X 0 = (X
1

, . . . , Xi�1

, X 0
i, Xi+1

, . . . , Xn).

Then

|Zi � Zi�1

| = |E[f(X) | Fi]� E[f(X) | Fi�1

]|
=

�

�E[f(X) | Fi]� E[f(X 0) | Fi�1

]
�

� (3.3)
=

�

�E[f(X) | Fi]� E[f(X 0) | Fi]
�

� (3.4)
=

�

�E[f(X)� f(X 0) | Fi]
�

�

 E
⇥|f(X)� f(X 0)| | Fi

⇤

 c,

where we applied the Lipschitz condition on the last line. Note that we crucially
used the independence of the Xks in (3.3) and (3.4).
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We return to the proof of the corollary. Applying the Azuma-Hoeffding in-
equality—almost—gives the result. Note that we have proved a factor of 1

2

instead
of 2 in the exponent. Obtaining the better factor requires an additional observation.
Note that, conditioned on X

1

, . . . , Xi�1

and Xi+1

, . . . , Xn, the random variable
f(X)� f(X 0) above lies almost surely in the interval


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.
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, . . . , Xn, we get that Zi�Zi�1
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which, because it does not depend on Xi and the Xjs are independent, is equal to
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Hence, conditioned on Fi�1

, the increment Zi � Zi�1

lies almost surely in an
interval of length

E

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f(X
1
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, y,Xi+1
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Using this fact directly in the application of Hoeffding’s lemma in (3.2) proves the
claim.

The following simple example shows that, without the independence assump-
tion, the conclusion of Lemma 3.4 in general fails to hold.
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Example 3.5 (A counterexample). Let f(x, y) = x + y where x, y 2 {0, 1}.
Clearly, f is 1-Lipschitz. Let X be a uniform random variable on {0, 1} and let Y
have conditional distribution

Y |X ⇠
(

X, w.p. 1� ",

1�X, w.p. ",

for some " > 0 small. Then

E[f(X,Y ) |X] = X +E[Y |X] = X + (1� ")X + "(1�X) = 2(1� ")X + ".

Hence, note that

|E[f(X,Y ) |X = 1]� E[f(X,Y ) |X = 0]| = 2(1� ") > 1,

for " small enough. In particular, the corresponding Doob martingale does not have
bounded increments with bound 1 despite the fact that f itself is 1-Lipschitz. J

Examples The moral of McDiarmid’s inequality is that functions of independent
variables that are smooth, in the sense that they do not depend too much on any one
of their variables, are concentrated around their mean. Here are some straightfor-
ward applications.

Example 3.6 (Balls and bins: empty bins). Suppose we throw m balls into n bins
independently, uniformly at random. The number of empty bins, Zn,m, is centered
at

EZn,m = n

✓

1� 1

n

◆m

.

Writing Zn,m as the sum of indicators
Pn

i=1

Bi , where Bi is the event that bin
i is empty, is a natural first attempt at proving concentration around the mean.
However there is a problem—the Bis are not independent. Indeed because there
is a fixed number of bins the event Bi intuitively makes the other such events less
likely. Instead let Xj be the index of the bin in which ball j lands. The Xjs
are independent by construction and, moreover, Zn,m = f(X

1

, . . . , Xm) with f
satisfying the Lipschitz condition with bound 1. Hence by the method of bounded
differences

P


�

�

�

�

Zn,m � n

✓

1� 1

n

◆m�
�

�

�

� b
p
m

�

 2e�2b2 .

J
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Example 3.7 (Pattern matching). Let X = (X
1

, X
2

, . . . , Xn) be i.i.d. random
variables taking values uniformly at random in a finite set S of size s = |S|. Let
a = (a

1

, . . . , ak) be a fixed substring of elements of S. We are interested in the
number of occurrences of a as a (consecutive) substring in X , which we denote by
Nn. Denote by Ei the event that the substring of X starting at i is a. Summing
over the starting positions and using the linearity of expectation, the mean of Nn is

ENn = E
"

n�k+1

X

i=1

Ei

#

= (n� k + 1)

✓

1

s

◆k

.

However the Eis are not independent. So we cannot use a Chernoff bound for
Poisson trials. Instead we use the fact that Nn = f(X) where f satisfies the
Lipschitz condition with bound k, as each Xi appears in at most k substrings of
length k. By the method of bounded differences, for all b > 0,

P
⇥|Nn � ENn| � bk

p
n
⇤  2e�2b2 .

J

The last two examples are perhaps not surprising in that they involve sums of
“almost independent” indicator variables. One might reasonably expect a sub-
Gaussian type inequality in that case. The next application is much more striking.

3.2.3 . Erdös-Rényi graphs: exposure martingales, and application to
the chromatic number

Exposure martingales A common way to apply the Azuma-Hoeffding inequal-
ity in the context of Erdös-Rényi graphs is to consider a so-called exposure martin-
gale. Let G ⇠ Gn,p and let F be function on graphs such that En,p|F (G)| < +1
for all n, p. For i = 1, . . . , n, denote by Hi the subgraph of G induced by
the first i vertices, where the vertices are ordered arbitrarily. Then the filtration
Hi = �(H

1

, . . . , Hi), i = 1, . . . , n, corresponds to exposing the vertices of G one
at a time. The Doob martingale

Zi = En,p[F (G) |Hi], i = 1, . . . , n,

is known as a vertex exposure martingale. Edge exposure can be defined similarly exposure
martingaleby exposing the edges one at a time in some arbitrary order.

As an example, consider the chromatic number �(G), i.e., the smallest number
of colors needed in a proper coloring of G. We claim that the corresponding vertex
exposure martingale (Zi) has bounded increments with bound 1.
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Lemma 3.8. Changing the edges adjacent to a single vertex can change the chro-
matic number by at most 1.

Proof. Changing the edges adjacent to v can increase the chromatic number by
at most 1 as one can always use an extra color for v. On the other hand, if the
chromatic number were to decrease by more than 1, reversing the change and using
the previous observation would give a contradiction.

Write �(G) = f(X
2

, . . . , Xn) for some function f where Xi = ( {{i,j}2G} :
j  i). Because Xi depends only on (a subset of) the edges adjacent to node i,
the previous lemma implies that f is 1-Lipschitz. Furthermore, since the Xis are
independent as they involve disjoint subsets of edges (which is the reason behind
the definition of vertex exposure), Lemma 3.4 implies that (Zi) has bounded incre-
ments with bound 1. Hence, for all 0 < p < 1 and n, by an immediate application
of the Azuma-Hoeffding inequality:

Claim 3.9.

Pn,p

⇥|�(G)� En,p[�(G)]| � b
p
n� 1

⇤  2e�b2/2.

In fact applying the method of bounded differences directly to f gives a slightly
better bound—but the constants rarely matter. Observe also that edge exposure
results in a much weaker bound as the⇥(n2) steps of the corresponding martingale
produce only a linear in n deviation for the same tail probability. (The reader
may want to ponder the apparent paradox: using a larger number of independent
variables seemingly leads to weaker concentration here.)

Remark 3.10. Note that Claim 3.9 tells us nothing about the expectation of �(G). It turns
out that, up to logarithmic factors, E

n,pn [�(G)] is of order np
n

when p
n

⇠ n�↵ for some
0 < ↵ < 1. We will not prove this result here. See the “Bibliographic remarks” at the end
of this chapter for more on the chromatic number of Erdös-Rényi graphs.

�(G) is concentrated on few values Much stronger concentration results can be
obtained: when pn = n�↵ with ↵ > 1

2

, �(G) is in fact concentrated on two values!
We give a partial result along those lines which illustrates a less straightforward
choice of martingale in the Azuma-Hoeffding inequality.

Claim 3.11. Let pn = n�↵ with ↵ > 5

6

and let Gn ⇠ Gn,pn . Then for any " > 0
there is 'n := 'n(↵, ") such that

Pn,pn ['n  �(Gn)  'n + 3 ] � 1� ",

for all n large enough.
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Figure 3.1: All but O(
p
n) vertices are colored using 'n colors. The remaining

vertices are colored using 3 additional colors.

Proof. We consider the following martingale. Let 'n be the smallest integer such
that

Pn,pn [�(Gn)  'n] >
"

3
. (3.5)

Let Fn(Gn) be the minimal size of a set of vertices, U , in Gn such that Gn\U
is 'n-colorable. Let (Zi) be the corresponding vertex exposure martingale. The
idea of the proof is to show that all but O(

p
n) vertices can be 'n-colored, and the

remaining vertices can be colored using 3 additional colors. See Figure 3.2.3.
We claim that (Zi) has bounded increments with bound 1.

Lemma 3.12. Changing the edges adjacent to a single vertex can change Fn by at
most 1.

Proof. Changing the edges adjacent to v can increase Fn by at most 1. Indeed, if
Fn increases, it must be that v /2 U and we can add v to U . On the other hand, if
Fn were to decrease by more than 1, reversing the change and using the previous
observation would give a contradiction.

Lemma 3.4 implies that (Zi) has bounded increments with bound 1.
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Choose b" such that e�b2"/2 = "
3

. Then, applying the Azuma-Hoeffding in-
equality to (�Zi),

Pn,pn

⇥

Fn(Gn)� En,pn [Fn(Gn)]  �b"
p
n� 1

⇤  "

3

which, since Pn,pn [Fn(Gn) = 0] = Pn,pn [�(Gn)  'n] >
"
3

, implies that

En,pn [Fn(Gn)]  b"
p
n� 1.

Applying the Azuma-Hoeffding inequality to (Zi) gives

Pn,pn

⇥

Fn(Gn) � 2b"
p
n� 1

⇤

(3.6)

 Pn,pn

⇥

Fn(Gn)� En,pn [Fn(Gn)] � b"
p
n� 1

⇤

 "

3
. (3.7)

So with probability at least 1 � "
3

, we can color all vertices but 2b"
p
n� 1 using

'n colors. Let U be the remaining uncolored vertices.
We claim that, with high probability, we can color the vertices in U using at

most 3 extra colors.

Lemma 3.13. Fix c > 0, ↵ > 5

6

and " > 0. Let Gn ⇠ Gn,pn with pn = n�↵. For
all n large enough,

Pn,pn

⇥

every subset of c
p
n vertices of Gn can be 3-colored

⇤ � 1� "

3
. (3.8)

Proof. We use the first moment method, Corollary 2.5. To bound the probability
that a subset of vertices is not 3-colorable, we consider a minimal such subset and
notice that all of its vertices must have degree at least 3. Indeed, suppose W is
not 3-colorable but that all of its subsets are (we call such a subset minimal, non
3-colorable), and suppose that w 2 W has degree less than 3. Then W\{w} is 3-

minimal,
non 3-colorable
subset

colorable. But, since w has fewer than 3 neighbors, it can also be properly colored
without adding a new color—a contradiction. In particular, the subgraph of Gn

induced by W must have at least 3

2

|W | edges.
Let Yn be the number of minimal, non 3-colorable subsets of vertices of Gn of

size at most c
p
n. By the argument above, the probability that a subset of vertices

of Gn of size ` is minimal, non 3-colorable is at most
�(`2)

3`
2

�

p
3`
2
n by a union bound
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over subsets of edges of size 3`
2

. Then, by the first moment method,

Pn,pn [Yn > 0]  En,pnYn


c
p
n

X
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✓
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`

◆✓

�

`
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�
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2

◆

p
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
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p
n

X

`=4

⇣en

`

⌘`
✓

e`

3

◆

3`
2

n� 3`↵
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
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p
n

X

`=4

 

e
5
2n1� 3↵

2 `
1
2

3
3
2

!`


c
p
n

X

`=4

⇣

c0n
5
4� 3↵

2

⌘`

 O
⇣

n
5
4� 3↵

2

⌘

4

! 0,

as n ! +1, for some c0 > 0, where we used that 5

4

� 3↵
2

< 5

4

� 5

4

= 0 when
↵ > 5

6

.

By the choice of 'n in (3.5),

Pn,pn [�(Gn) < 'n]  "

3
.

By (3.7) and (3.8),

Pn,pn [�(Gn) > 'n + 3]  2"

3
.

So, overall,
Pn,pn ['n  �(Gn)  'n + 3] � 1� ".

3.2.4 . Hypercube: concentration of measure

For A ✓ {0, 1}n a subset of the hypercube and r > 0, we let

Ar =

⇢

x 2 {0, 1}n : inf
a2A

kx� ak
1

 r

�

,

be the points at `1 distance r from A.
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Fix " 2 (0, 1/2) and assume that |A| � "2n. Let �" be such that e�2�2
" =

". The following application of the method of bounded differences indicates that
much of the uniform measure on the high-dimensional hypercube lies in a close
neighborhood of A, an example of the concentration of measure phenomenon.

Claim 3.14.
r > 2�"

p
n =) |Ar| � (1� ")2n.

Proof. Let X = (X
1

, . . . , Xn) be uniformly distributed in {0, 1}n. Note that the
coordinates are in fact independent. The function f(x) = infa2A kx�ak

1

satisfies
the Lipschitz condition with bound 1. Indeed changing one coordinate of x can
only increase the `1 distance to the closest point to x by 1. Hence the method of
bounded differences gives

P [Ef(X)� f(X) � �]  exp

✓

�2�2

n

◆

.

Choosing � = Ef(X) and noting that f(x)  0 if and only if x 2 A gives

P[A]  exp

✓

�2(Ef(X))2

n

◆

,

or, rearranging and using our assumption on A,

Ef(X) 
s

1

2
n log

1

P[A]

r

1

2
n log

1

"
= �"

p
n.

By a second application of the method of bounded differences with � = �"
p
n,

P
⇥

f(X) � 2�"

p
n
⇤  P [f(X)� Ef(X) � b]  exp

✓

�2�2

n

◆

= ".

The result follows by observing that, with r > 2�"
p
n,

|Ar|
2n

� P
⇥

f(X) < 2�"

p
n
⇤ � 1� ".

Claim 3.14 is striking for two reasons: 1) the radius 2�"
p
n is much smaller

than n, the diameter of {0, 1}n; and 2) it applies to any A. The smallest r such that
|Ar| � (1� ")2n in general depends on A. Here are two extremes:
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- For � > 0, let

B(�) :=

⇢

x 2 {0, 1}n : kxk
1

 n

2
� �

r

n

4

�

.

Note that

1

2n
|B(�)| =

n
2��

p
n
4

X

`=0

✓

n

`

◆

2�n

= P


Yn  n

2
� �

r

n

4

�

= P
"

Yn � n/2
p

n/4
 ��

#

, (3.9)

where Yn ⇠ B(n, 1
2

). By the Berry-Esséen theorem (e.g., [Dur10, Theorem
3.4.9]), there is a C > 0 such that

�

�

�

�

�

P
"

Yn � n/2
p

n/4
 ��

#

� P[Z  ��]

�

�

�

�

�

 Cp
n
,

where Z ⇠ N(0, 1). Let " < "0 < 1/2 and let �"0 be such that P[Z 
��"0 ] = "0. Then setting A := B(�"0), for n large enough,

|A| � "2n,

by (3.9). On the other hand, setting r := �"0
p

n/4, we have

Ar ✓ B(0),

so that |Ar|  1

2

2n < (1 � ")2n. We have shown that r = ⌦(
p
n) is in

general required for Claim 3.14 to hold.

- Assume for simplicity that N := "2n is an integer. Let A ✓ {0, 1}n be
constructed as follows: starting from the empty set, add points in {0, 1}n to
A independently, uniformly at random until |A| = N . Set r := 2. By the
first moment method, Corollary 2.5, the probability that Ar ⇢ {0, 1}n is at
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most

P[|{0, 1}n\Ar| > 0]  E|{0, 1}n\Ar|
=

X

x2{0,1}n
P[x /2 Ar]

 2n

 

1�
�

n
2

�

2n

!"2n

 2ne�"(n2)

! 0,

where, on the third line, we considered only the first N picks in the construc-
tion of A. In particular, as n ! +1, P[|{0, 1}n\Ar| > 0] < 1. So for n
large enough there is a set A such that Ar = {0, 1}n where r = 2.

Remark 3.15. In fact, it can be shown that sets of the form {x : kxk
1

 s} have the small-
est “expansion” among subsets of {0, 1}n of the same size, a result known as Harper’s
vertex isoperimetric theorem. See, e.g., [BLM13, Theorem 7.6 and Exercises 7.11-7.13].

3.2.5 . Preferential attachment graphs: degree sequence

Let (Gt)t�1

⇠ PAm be a preferential attachment graph process with parameter
m � 1. A key feature of preferential attachment graphs is a power-law degree
sequence: the fraction of vertices with degree d behaves like / d�↵ for some
↵ > 0, i.e., it has a fat tail. We prove this in the case of scale-free trees, m = 1. In
contrast, we will show in Section 4.1.2 that (sparse) Erdös-Rényi graphs have an
asymptotically Poisson-distributed degree sequence.

Power law degree sequence Let Di(t) be the degree of the i-th vertex, vi, in Gt,
and denote by

Nd(t) :=
t
X

i=0

{Di(t)=d},

the number of vertices of degree d in Gt. Define

fd :=
4

d(d+ 1)(d+ 2)
, d � 1. (3.10)

Claim 3.16.
1

t
Nd(t) !p

fd, 8d � 1.
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Proof. Claim 3.16 follows from the following lemmas. Fix � > 0.

Lemma 3.17 (Convergence of the mean).

1

t
ENd(t) ! fd, 8d � 1.

Lemma 3.18 (Concentration around the mean).

P
"

�

�

�

�

1

t
Nd(t)� 1

t
ENd(t)

�

�

�

�

�
r

2 log ��1

t

#

 2�, 8d � 1, 8t.

An alternative representation of the process We start with the proof of Lem-
ma 3.18, which follows from an application of the method of bounded differences.

Proof of Lemma 3.18. In our description of the preferential attachment process,
the random choices made at each time depend in a seemingly complicated way
on previous choices. In order to establish concentration of the process around its
mean, we introduce a clever, alternative construction of the m = 1 case which has
the advantage that it involves independent choices.

We start with a single vertex v
0

. At time 1, we add a single vertex v
1

and an
edge e

1

connecting v
0

and v
1

. For bookkeeping we orient edges away from the
vertex of lower time index. For all s � 2, let Xs be an independent, uniformly
chosen edge extremity among the edges in Gs�1

, i.e., pick a uniform element in

Xs := {(1, tail), (1, head), . . . , (s� 1, tail), (s� 1, head)}.

To form Gs, attach a new edge es to the vertex of Gs�1

corresponding to Xs. A
vertex of degree d0 in Gs�1

is selected with probability d0

2(s�1)

, as it should. Note
that Xs can be picked in advance independently of the sequence (Gs0)s0<s.

For instance, if x
2

= (1, head), x
3

= (2, tail) and x
4

= (3, head), the graph
obtained at time 4 is depicted in Figure 3.2.

We claim that Nd(t) =: h(X
2

, . . . , Xt) seen as a function of X
2

, . . . , Xt is 2-
Lipschitz. Indeed let (x

2

, . . . , xt) be a realization of (X
2

, . . . , Xt) and let y 2 Xs

with y 6= xs. Replacing xs = (i, end) with y = (j, end0) where i, j 2 {1, . . . , s�
1} and end, end0 2 {tail, head} has the effect of redirecting the head of edge es
from the end of ei to the end0 of ej . This redirection also brings along with it
the heads of all other edges associated with the choice (s, head). But, crucially,
those changes only affect the degrees of the vertices corresponding to (i, end) and
(j, end0) in the original graph. Hence the number of vertices with degree d changes
by at most 2.
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Figure 3.2: Graph obtained when x
2

= (1, head), x
3

= (2, tail) and x
4

=
(3, head).

Figure 3.3: Substituting x
3

= (2, tail) with y = (1, tail) in the example of
Figure 3.2 has the effect of replacing the red edges with the green edges. Note that
only the degrees of vertices v

1

and v
2

are affected by this change.
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For instance, returning to the example of Figure 3.2. If we replace x
3

=
(2, tail) with y = (1, tail), one obtains the graph in Figure 3.3. Note that only
the degrees of vertices v

1

and v
2

are affected by this change.
By the method of bounded differences, for all � > 0,

P[|Nd(t)� ENd(t)| � �]  2 exp

✓

� 2�2

(2)2(t� 1)

◆

,

which, choosing � =
p

2t log ��1, we can re-write as

P
"

�

�

�

�

1

t
Nd(t)� 1

t
ENd(t)

�

�

�

�

�
r

2 log ��1

t

#

 2�.

Dynamics of the mean Once again the method of bounded differences tells us
nothing about the mean, which must be analyzed by other means. The proof of
Lemma 3.17 does not rely on the Azuma-Hoeffding inequality but is given for
completeness (and may be skipped).

Proof of Lemma 3.17. The idea of the proof is to derive a recursion for fd by con-
sidering the evolution of ENd(t) and taking a limit as t ! +1. By the description
of the preferential attachment process, the following recursion holds for t � d

ENd(t+ 1)� ENd(t) =
d� 1

2t
ENd�1

(t)
| {z }

(a)

� d

2t
ENd(t)

| {z }

(b)

+ {d=1}
| {z }

(c)

, (3.11)

and ENd(d � 1) = 0. Indeed: (a) for d � 2, Nd(t) increases by 1 if a vertex
of degree d � 1 is picked, an event of probability d�1

2t Nd�1

(t) because the sum
of degrees at time t is twice the number of edges, i.e., 2t; (b) for d � 1, Nd(t)
decreases by 1 if a vertex of degree d is picked, an event of probability d

2tNd(t);
and (c) the last term comes from the fact that the new vertex always has degree 1.
We re-write (3.11) as

ENd(t+ 1) = ENd(t) +
d� 1

2t
ENd�1

(t)� d

2t
ENd(t) + {d=1}

=

✓

1� d/2

t

◆

ENd(t) +

⇢

d� 1

2



1

t
ENd�1

(t)

�

+ {d=1}

�

=:

✓

1� d/2

t

◆

ENd(t) + gd(t), (3.12)
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where gd(t) is defined as the expression in curly brackets on the second line. We
show by induction on d that 1

tENd(t) ! fd. Because of the form of the recursion,
the following lemma is what we need to proceed.

Lemma 3.19. Let f be a function of t 2 N satisfying the following recursion

f(t+ 1) =
⇣

1� ↵

t

⌘

f(t) + g(t), 8t � t
0

with g(t) ! g 2 (�1,+1) as t ! +1, and where ↵ > 0, t
0

� 2↵, f(t
0

) � 0
are constants. Then

1

t
f(t) ! g

1 + ↵
,

as t ! +1.

The proof of this lemma is given after the proof of Claim 3.16. We first con-
clude the proof of Lemma 3.17. First let d = 1. In that case, g

1

(t) = g
1

:= 1,
↵ := 1/2, and t

0

:= 1. By Lemma 3.19,

1

t
EN

1

(t) ! 1

1 + 1/2
=

2

3
= f

1

.

Assuming by induction that 1

tENd0(t) ! fd0 for all d0 < d we get

gd(t) ! gd :=
d� 1

2
fd�1

,

as t ! +1. Using Lemma 3.19 with ↵ := d/2 and t
0

:= d, we obtain

1

t
ENd(t) ! 1

1 + d/2



d� 1

2
fd�1

�

=
d� 1

d+ 2
· 4

(d� 1)d(d+ 1)
= fd,

where we used (3.10). That concludes the proof of Lemma 3.17.

To prove Claim 3.16, we combine Lemmas 3.17 and 3.18. Fix any �, " > 0.
Choose t0 large enough that for all t � t0

max

(

�

�

�

�

1

t
ENd(t)� fd

�

�

�

�

,

r

2 log ��1

t

)

 ".

Then
P


�

�

�

�

1

t
Nd(t)� fd

�

�

�

�

� 2"

�

 2�,

for all t � t0. That proves convergence in probability.
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Proof of the technical lemma It remains to prove Lemma 3.19.

Proof of Lemma 3.19. By induction on t, we have

f(t+ 1) =
⇣

1� ↵

t

⌘

f(t) + g(t)

=
⇣

1� ↵

t

⌘

✓

1� ↵

t� 1

◆

f(t� 1) + g(t� 1)

�

+ g(t)

=
⇣

1� ↵

t

⌘

g(t� 1) + g(t) +
⇣

1� ↵

t

⌘

✓

1� ↵

t� 1

◆

f(t� 1)

= · · ·

=

t�t0
X

i=1

g(t� i)
i�1

Y

j=0

✓

1� ↵

t� j

◆

+ f(t
0

)

t�t0
Y

j=0

✓

1� ↵

t� j

◆

,

or

f(t+ 1) =

t
X

s=t0

g(s)
t
Y

r=s+1

⇣

1� ↵

r

⌘

+ f(t
0

)

t
Y

r=t0

⇣

1� ↵

r

⌘

. (3.13)

To guess the answer note that, for large s, g(s) is roughly constant and that the
product in the first term behaves like

exp

 

�
t
X

r=s+1

↵

r

!

⇡ exp (�↵(log t� log s)) ⇡ s↵

t↵
.

So approximating the sum by an integral we get that f(t+ 1) ⇡ gt
↵+1

.
Formally, we use that there is a constant � = 0.577 . . . such that (see e.g. [LL10,

Lemma 12.1.3])
m
X

`=1

1

`
= logm+ � +⇥(m�1),

and that by a Taylor expansion, for |z|  1/2,

log (1� z) = �z +⇥(z2).

Fix ⌘ > 0 small and take t large enough that ⌘t > 2↵ and |g(s) � g| < ⌘ for all
s � ⌘t. Then, for s+ 1 � t

0

,

t
X

r=s+1

log
⇣

1� ↵

r

⌘

= �
t
X

r=s+1

n↵

r
+⇥(r�2)

o

= �↵ (log t� log s) +⇥(s�1),
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so, taking exponentials,

t
Y

r=s+1

⇣

1� ↵

r

⌘

=
s↵

t↵
(1 +⇥(s�1)).

Hence

1

t
f(t

0

)

t
Y

r=t0

⇣

1� ↵

r

⌘

=
t↵
0

t↵+1

(1 +⇥(t�1

0

)) ! 0.

Moreover

1

t

t
X

s=⌘t

g(s)
t
Y

r=s+1

⇣

1� ↵

r

⌘

 1

t

t
X

s=⌘t

(g + ⌘)
s↵

t↵
(1 +⇥(s�1))

 O(⌘) + (1 +⇥(t�1))
g

t↵+1

t
X

s=⌘t

s↵

 O(⌘) + (1 +⇥(t�1))
g

t↵+1

(t+ 1)↵+1

↵+ 1

! O(⌘) +
g

↵+ 1
,

and, similarly,

1

t

⌘t�1

X

s=t0

g(s)
t
Y

r=s+1

⇣

1� ↵

r

⌘

 1

t

⌘t�1

X

s=t0

(g + ⌘)
s↵

t↵
(1 +⇥(s�1))

 ⌘t

t
(g + �)

(⌘t)↵

t↵
(1 +⇥(t�1

0

))

! O(⌘↵+1).

Plugging these inequalities back into (3.13), we get

lim sup
t

1

t
f(t+ 1)  g

1 + ↵
+O(⌘).

A similar inequality holds in the other direction. Taking ⌘ ! 0 concludes the
proof.

Remark 3.20. A more quantitative result (uniform in t and d) can be derived. See,
e.g., [vdH14, Sections 8.5, 8.6]. See the same reference for the case m > 1.
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3.3 Electrical networks

In this section we develop a classical link between random walks and electrical
networks. The electrical interpretation is merely a useful physical analogy. The
mathematical substance of the connection starts with the following well-known
observation.

Let (Xt) be a Markov chain with transition matrix P on a finite or countable
state space V . For two disjoint subsets A,Z of V , the probability of hitting A
before Z

h(x) = Px[⌧A < ⌧Z ], (3.14)

seen as a function of the starting point x 2 V , is harmonic on W := (A [ Z)c in
the sense that

h(x) =
X

y

P (x, y)h(y), 8x 2 W, (3.15)

where h ⌘ 1 (respectively ⌘ 0) on A (respectively Z). Indeed by the Markov
property, after one step of the chain, for x 2 W

Px[⌧A < ⌧Z ] =
X

y/2A[Z
P (x, y)Py[⌧A < ⌧Z ]

+
X

y2A
P (x, y) · 1 +

X

y2Z
P (x, y) · 0

=
X

y

P (x, y)Py[⌧A < ⌧Z ]. (3.16)

Quantities such as (3.14) arise naturally, for instance in the study of recurrence, and
the connection to potential theory, the study of harmonic functions, proves fruitful
in that context—and beyond—as we outline in this section.

First we re-write (3.15) to reveal the electrical interpretation. For this we switch
to reversible chains. Recall that a reversible Markov chain is equivalent to a random
walk on a network N = (G, c) where the edges of G correspond to transitions of
positive probability. If the chain is reversible with respect to a stationary measure ⇡,
then the edge weights are c(x, y) = ⇡(x)P (x, y). In this notation (3.15) becomes

h(x) =
1

c(x)

X

y⇠x

c(x, y)h(y), 8x 2 (A [ Z)c, (3.17)

where c(x) :=
P

y⇠x c(x, y) = ⇡(x). In words, h(x) is the weighted average of its
neighboring values. Now comes the electrical analogy: if one interprets c(x, y) as
a conductance, a function satisfying (3.17) is known as a voltage or potential func-
tion. The voltages at A and Z are 1 and 0 respectively. We show in the next sub-
section by a martingale argument that, under appropriate conditions, such a voltage
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exists and is unique. To see why martingales come in, let Ft = �(X
0

, . . . , Xt) and
⌧⇤ := ⌧A[Z . Notice that, by a one-step calculation again, (3.15) implies that

h(Xt^⌧⇤) = E
⇥

h(X
(t+1)^⌧⇤) | Ft

⇤

, 8t � 0,

i.e., (h(Xt^⌧⇤))t is a martingale with respect to (Ft).

3.3.1 Martingales and the Dirichlet problem

Although the rest of Section 3.3 is concerned with reversible Markov chains, the
current subsection applies to the non-reversible case as well. The following defini-
tion will be useful below. Let � be a stopping time for a Markov chain (Xt). The
Green function of the chain stopped at � is given by

Green function

G�(x, y) = Ex

2

4

X

0t<�

{Xt=y}

3

5 , x, y 2 V

i.e., it is the expected number of visits to y before � when started at x. We will use
the notation h|Z for the function h restricted to the subset Z.

Existence and uniqueness of a harmonic extension We begin with a general
problem.

Theorem 3.21 (Existence and uniqueness). Let P be an irreducible transition ma-
trix on a finite or countable spate space V . Let W be a finite, proper subset of V
and let h : W c ! R be a bounded function on W c = V \W . Then there exists a
unique extension of h to W that is harmonic on W , i.e., it satisfies

harmonic
function

h(x) =
X

y

P (x, y)h(y), 8x 2 W. (3.18)

The solution is given by h(x) = Ex[h (X⌧Wc )].

Proof. We first argue about uniqueness. Suppose h is defined over all of V and
satisfies (3.18). Let ⌧⇤ := ⌧W c . Then the process (h (Xt^⌧⇤))t is a martingale: on
{⌧⇤  t},

E[h(X
(t+1)^⌧⇤) | Ft] = h(X⌧⇤) = h(Xt^⌧⇤),

and on {⌧⇤ > t}

E[h(X
(t+1)^⌧⇤) | Ft] =

X

y

P (Xt, y)h(y) = h(Xt) = h(Xt^⌧⇤).
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Because W is finite and the chain is irreducible, we have ⌧⇤ < +1 a.s. See
Lemma ??. Moreover the process is bounded because h is bounded on W c and
W is finite. Hence by the bounded convergence theorem (or the optional stopping
theorem)

h(x) = Ex[h(X0

)] = Ex[h(Xt^⌧⇤)] ! Ex[h(X⌧⇤)], 8x 2 W,

which implies that h is unique.
For the existence, simply define

h(x) = Ex[h (X⌧⇤)], 8x 2 W,

and use the Markov property as in (3.16).

For some insights on what happens when the assumptions of Theorem 3.21 are
not satisfied, see Exercise 3.3. For an alternative proof of uniqueness based on the
maximum principle, see Exercise 3.4.

The previous result is related to the classical Dirichlet problem in partial differ-
ential equations. To see the connection, note first that the proof above still works if
one only specifies h on the outer boundary of W

@VW = {z 2 V \W : 9y 2 W,P (y, z) > 0}.

Introduce the Laplacian operator on N
Laplacian

�N f(x) =

"

X

y

P (x, y)f(y)

#

� f(x) =
X

y

P (x, y)[f(y)� f(x)].

We have proved that, under the assumptions of Theorem 3.21, there exists a unique
solution to

(

�N f(x) = 0, 8x 2 W,

f(x) = h(x), 8x 2 @VW,
(3.19)

and that solution is given by f(x) = Ex[h (X⌧Wc )], for x 2 W [ @VW . The
system (3.19) is called a Dirichlet problem. The Laplacian above can be interpreted

Dirichlet
problem

as a discretized version of the standard Laplacian. For instance, for simple random
walk on Z (with ⇡ ⌘ 1), �N f(x) = 1

2

{[f(x + 1) � f(x)] � [f(x) � f(x � 1)]}
which is a discretized second derivative.
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Applications Before developing the electrical network theory, we point out that
Theorem 3.21 has many more applications. One of its consequences is that har-
monic functions on finite, connected networks are constant.

Corollary 3.22. Let P be an irreducible transition matrix on a finite state space
V . If h is harmonic on all of V , then it is constant.

Proof. Fix the value of h at an arbitrary vertex z and set W = V \{z}. Applying
Theorem 3.21, for all x 2 W , h(x) = Ex[h (X⌧Wc )] = h(z).

As an example of application of this corollary, we prove the following surpris-
ing result: in a finite, irreducible Markov chain, the expected time to hit a target
chosen at random according to the stationary distribution does not depend on the
starting point.

Theorem 3.23 (Random target lemma). Let (Xt) be an irreducible Markov chain
on a finite state space V with transition matrix P and stationary distribution ⇡.
Then

h(x) :=
X

y2V
⇡(y)Ex[⌧y]

does not in fact depend on x.

Proof. By assumption, Ex[⌧y] < +1 for all x, y. By Corollary 3.22, it suffices to
show that h(x) :=

P

y ⇡(y)Ex[⌧y] is harmonic on all of V . As before, it is natural
to expand Ex[⌧y] according to the first step of the chain,

Ex[⌧y] = {x 6=y}

 

1 +
X

z

P (x, z)Ez[⌧y]

!

.

Substituting into h(x) gives

h(x) = (1� ⇡(x)) +
X

z

X

y 6=x

⇡(y)P (x, z)Ez[⌧y]

= (1� ⇡(x)) +
X

z

P (x, z) (h(z)� ⇡(x)Ez[⌧x]) .

Rearranging, we get

�Nh(x) = ⇡(x)

 

1 +
X

z

P (x, z)Ez[⌧x]

!

� 1 = 0,

where we used 1/⇡(x) = Ex[⌧+x ] = 1 +
P

z P (x, z)Ez[⌧x].
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3.3.2 Basic electrical network theory

We now develop the basic theory of electrical networks and their connections to
random walks. We begin with a few definitions.

Definitions Let N = (G, c) be a finite or countable network. Throughout this
section we assume that N is connected and locally finite. In the context of electri-
cal networks, edge weights are called conductances. The reciprocal of the conduc-

conductance
tances are called resistances and are denoted by r(x, y) = 1/c(x, y), for all x ⇠ y.

resistance
Both c and r are symmetric. For an edge e = {x, y} we also write c(e) := c(x, y)
and r(e) := r(x, y). Recall that the transition matrix of the random walk on N
satisfies

P (x, y) =
c(x, y)

P

y⇠x c(x, y)
.

Let A, Z be disjoint, non-empty subsets of V such that W := (A [ Z)c is
finite. For our purposes it will suffice to take A to be a singleton, i.e. A = {a} for
some a. Then a is called the source and Z is called the sink-set, or sink for short.

source, sink
As an immediate corollary of Theorem 3.21, we obtain the existence and unique-

ness of a voltage function, defined formally in the next corollary. It will be useful
to consider voltages taking an arbitrary value at a, but we always set the voltage on
Z to 0. Note in the definition below that if v is a voltage with value v

0

at a, then
ṽ(x) = v(x)/v

0

is a voltage with value 1 at a.

Corollary 3.24 (Voltage). Fix v
0

> 0. Let N = (G, c) be a finite or countable,
connected network with G = (V,E). Let A := {a}, Z be disjoint non-empty
subsets of V such that W = (A [ Z)c is non-empty and finite. Then there exists a
unique voltage, i.e., a function v on V such that v is harmonic on W

voltage

v(x) =
1

c(x)

X

y⇠x

c(x, y)v(y), 8x 2 W, (3.20)

where c(x) =
P

y⇠x c(x, y), and

v(a) = v
0

and v|Z ⌘ 0. (3.21)

Moreover
v(x)

v
0

= Px[⌧a < ⌧Z ], (3.22)

for the corresponding random walk on N .

Proof. Set h(x) = v(x) on A [ Z. Theorem 3.21 gives the result.
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Let v be a voltage function on N with source a and sink Z. The Laplacian-
based formulation of harmonicity, (3.19), can be interpreted in flow terms as fol-
lows. We define the current function i(x, y) := c(x, y)[v(x) � v(y)] or, equiva- current
lently, v(x) � v(y) = r(x, y) i(x, y). The latter definition is usually referred to
as Ohm’s “law.” Notice that the current function is defined on ordered pairs of

Ohm’s law
vertices and is anti-symmetric, i.e., i(x, y) = �i(y, x). In terms of the current
function, the harmonicity of v is then expressed as

X

y⇠x

i(x, y) = 0, 8x 2 W,

i.e., i is a flow on W . This set of equations is known as Kirchhoff’s node law.
Kirchhoff’s
node law

We also refer to these constraints as flow-conservation constraints. To be clear, the
current function is not just any flow. It is a flow that can be written as a potential
difference according to Ohm’s law. Such a current also satisfies Kirchhoff’s cycle
law: if x

1

⇠ x
2

⇠ · · · ⇠ xk ⇠ xk+1

= x
1

is a cycle, then
Kirchhoff’s
cycle lawk

X

j=1

i(xj , xj+1

) r(xj , xj+1

) = 0,

as can be seen by substituting Ohm’s law. The strength of the current is defined as
strength

kik =
X

y⇠a

i(a, y).

The definition of i(x, y) ensures that the flow out of the source is nonnegative as
Py[⌧a < ⌧Z ]  1 = Pa[⌧a < ⌧Z ] for all y ⇠ a. Note that by multiplying the
voltage by a constant we obtain a current which is similarly scaled. Up to that
scaling, the current function is unique from the uniqueness of the voltage. We will
often consider the unit current where we scale v and i so as to enforce that kik = 1.

unit current

Remark 3.25. Note that the definition of the current depends crucially on the reversibility
of the chain, i.e., on the fact that c(x, y) = c(y, x). For non-reversible chains, it is not clear
how to interpret the system (3.19) as flow conservation as it involves only the outgoing
transitions (which in general are not related to the incoming transitions).

Summing up the previous paragraph, to determine the voltage it suffices to find
functions v and i that simultaneously satisfy Ohm’s law and Kirchhoff’s node law.
Here is an example.

Example 3.26 (Network reduction: birth-and-death chain). Let N be the line on
{0, 1, . . . , n} with j ⇠ k () |j � k| = 1 and arbitrary (positive) conductances
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on the edges. Let (Xt) be the corresponding walk. We use the principle above
to compute Px[⌧0 < ⌧n] for 1  x  n � 1. Consider the voltage function v
when v(0) = 1 and v(n) = 0 with current i. The desired quantity is v(x) by
Corollary 3.24. Note that because i is a flow on N , the flow into every vertex
equals the flow out of that vertex, and we must have i(y, y + 1) = i(0, 1) = kik
for all y. To compute v(x), we note that it remains the same if we replace the path
0 ⇠ 1 ⇠ · · · ⇠ x with a single edge of resistance R

0,x = r(0, 1)+· · ·+r(x�1, x).
Indeed leave the voltage unchanged on the remaining nodes and define the current
on the new edge as kik. Kirchhoff’s node law is automatically satisfied by the
argument above. To check Ohm’s law on the new “super-edge,” note that on the
original network N

v(0)� v(x) = (v(0)� v(1)) + · · ·+ (v(x� 1)� v(x))

= r(x� 1, x)i(x� 1, x) + · · ·+ r(0, 1)i(0, 1)

= [r(0, 1) + · · ·+ r(x� 1, x)]kik
= R

0,xkik.

Ohm’s law is also satisfied on every other edge because nothing has changed there.
That proves the claim. We do the same reduction on the other side of x by replacing
x ⇠ x+ 1 ⇠ · · · ⇠ n with a single edge of resistance Rx,n = r(x, x+ 1) + · · ·+
r(n � 1, n). See Figure 3.26. Because the voltage at x has not changed, we can
compute v(x) = Px[⌧0 < ⌧n] directly on the reduced network, where it is now a
straightforward computation. Indeed, starting at x, the reduced walk jumps to 0
with probability proportional to the conductance on the new super-edge 0 ⇠ x (or
the reciprocal of the resistance), i.e.,

Px[⌧0 < ⌧n] =
R�1

0,x

R�1

0,x +R�1

x,n

=
Rx,n

Rx,n +R
0,x

=
r(x, x+ 1) + · · ·+ r(n� 1, n)

r(0, 1) + · · ·+ r(n� 1, n)
.

Some special cases:

• Simple random walk. In the case of simple random walk, all resistances are
equal and we get

Px[⌧0 < ⌧n] =
n� x

n
.
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Figure 3.4: Reduced network.

• Gambler’s ruin. The gambler’s ruin example corresponds to taking c(j, j +
1) = (p/q)j or r(j, j + 1) = (q/p)j , for some 0 < p < 1. In this case we
obtain

Px[⌧0 < ⌧n] =

Pn�1

j=x(q/p)
j

Pn�1

j=0

(q/p)j
=

(q/p)x(1� (q/p)n�x)

1� (q/p)n
=

(p/q)n�x � 1

(p/q)n � 1
,

when p 6= q (otherwise we get back the simple random walk case).

J

The above example illustrates the series law: resistances in series add up.
series law,
parallel law

There is a similar parallel law: conductances in parallel add up. To formalize these
laws, one needs to introduce multigraphs. This is straightforward, but to avoid
complicating the notation further we will not do this here. (See the “Bibliographic
remarks” for more.) Another useful network reduction technique is shorting, in

shorting
which we identify, or glue together, vertices with the same voltage while keeping
existing edges. Here is an example.

Example 3.27 (Network reduction: binary tree). Let N be the rooted binary tree
with n levels bTn

2

and equal conductances on all edges. Let 0 be the root. Pick an
arbitrary leaf and denote it by n. The remaining vertices on the path between 0
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and n, which we refer to as the main path, will be denoted by 1, . . . , n� 1 moving
away from the root. We claim that, for all 0 < x < n, it holds that

Px[⌧0 < ⌧n] = (n� x)/n.

Indeed let v be the voltage with values 1 and 0 at a = 0 and Z = {z} with z = n
respectively. Let i be the corresponding current. Notice that, for each 0  y < n,
the current—as a flow—has nowhere to go on the subtree Ty hanging from y away
from the main path. The leaves of the subtree are dead ends. Hence the current
must be 0 on Ty and by Ohm’s law the voltage must be constant on it, i.e., every
vertex in Ty has voltage v(y). Imagine collapsing all vertices in Ty, including y,
into a single vertex (and removing the self-loops so created). Doing this for every
vertex on the main path results in a new reduced network which is formed of a
single path as in Example 3.26. Note that the voltage and the current can be taken
to be the same as they were previously on the main path. Indeed, with this choice,
Ohm’s law is automatically satisfied. Moreover, because there is no current on
the hanging subtrees in the original network, Kirchhoff’s node law is also satisfied
on the reduced network, as no current is lost. Hence the answer can be obtained
from Example 3.26. That proves the claim. (You should convince yourself that this
result is obvious from a probabilistic point of view.) J

We gave a probabilistic interpretation of the voltage. What about the current?
The following result says that, roughly speaking, i(x, y) is the net traffic on the
edge {x, y} from x to y. We start with an important formula for the voltage at a.
For the walk started at a, we use the shorthand

P[a ! Z] := Pa[⌧Z < ⌧+a ],

for the escape probability. escape
probabilityLemma 3.28. Let v be a voltage on N with source a and sink Z. Let i be the

associated current. Then

v(a)

kik =
1

c(a)P[a ! Z]
. (3.23)
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Proof. Using the usual one-step trick,

P[a ! Z] =
X

x⇠a

P (a, x)Px[⌧Z < ⌧a]

=
X

x⇠a

c(a, x)

c(a)

✓

1� v(x)

v(a)

◆

=
1

c(a)v(a)

X

x⇠a

c(a, x)[v(a)� v(x)]

=
1

c(a)v(a)

X

x⇠a

i(a, x),

where we used Corollary 3.24 on the second line and Ohm’s law on the last line.
Rearranging gives the result.

Theorem 3.29 (Probabilistic interpretation of the current). For x ⇠ y, let NZ
x!y

be the number of transitions from x to y up to the time of the first visit to the sink Z
for the random walk on N started at a. Let v be the voltage corresponding to the
unit current i. Then the following formulas hold:

v(x) =
G⌧Z (a, x)

c(x)
, 8x, (3.24)

and
i(x, y) = Ea[N

Z
x!y �NZ

y!x], 8x ⇠ y.

Proof. We prove the formula for the voltage by showing that v(x) as defined above
is harmonic on W = V \{a} [ Z. Note first that G⌧Z (a, z) = 0 for all z 2 Z by
definition, or 0 = v(z) =

G⌧Z
(a,z)

c(z) . Moreover, to compute G⌧Z (a, a), note that the
number of visits to a before the first visit to Z is geometric with success probability
P[a ! Z] by the strong Markov property and hence

G⌧Z (a, a) =
1

P[a ! Z]
,

and by the previous lemma v(a) =
G⌧Z

(a,a)

c(a) , as required. To establish the formula
for x 2 W , we compute the quantity 1

c(x)

P

y⇠x Ea[NZ
y!x] in two ways. First,

because each visit to x 2 W must enter through one of x’s neighbors (including
itself in the presence of a self-loop), we get

1

c(x)

X

y⇠x

Ea[N
Z
y!x] =

G⌧Z (a, x)

c(x)
. (3.25)
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On the other hand,

Ea[N
Z
y!x] = Ea

2

4

X

0t<⌧Z

{Xt=y,Xt+1=x}

3

5

=
X

t�0

Pa [Xt = y,Xt+1

= x, ⌧Z > t]

=
X

t�0

Pa[⌧Z > t]Pa[Xt = y | ⌧Z > t]P (y, x)

= P (y, x)Ea

2

4

X

0t<⌧Z

{Xt=y}

3

5

= P (y, x)G⌧Z (a, y), (3.26)

so that, summing over y, we obtain this time

1

c(x)

X

y⇠x

Ea[N
Z
y!x] =

1

c(x)

X

y⇠x

P (y, x)G⌧Z (a, y) =
X

y⇠x

P (x, y)
G⌧Z (a, y)

c(y)
,

(3.27)
where we used reversibility. Equating (3.25) and (3.27) shows that G⌧Z

(a,x)

c(x) is
harmonic on W and hence must be equal to the voltage function by Corollary 3.24.

Finally, by (3.26),

Ea[N
Z
x!y �NZ

y!x] = P (x, y)G⌧Z (a, x)� P (y, x)G⌧Z (a, y)

= P (x, y)v(x)c(x)� P (y, x)v(y)c(y)

= c(x, y)[v(x)� v(y)]

= i(x, y).

That concludes the proof.

Remark 3.30. Formula (3.24) relies crucially on reversibility. Indeed assume the chain
has stationary distribution ⇡. Then, in probabilistic terms, (3.24) reads

⇡(x)P
x

[⌧
a

< ⌧
Z

] =
G
⌧Z (a, x)

⇡(a)P[a ! Z]
,

where we used (3.22) and (3.23), and the fact that the current has unit strength. This is
not true in general for non-reversible chains. Take for instance a deterministic walk on a
directed cycle of size n with x on the directed path from a to Z = {z}. In that case the
l.h.s. is 0 but the r.h.s. is n.
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Example 3.31 (Network reduction: binary tree (continued)). Recall the setting of
Example 3.27. We argued that the current on side edges, i.e., edges of subtrees
hanging from the main path, is 0. This is clear from the probabilistic interpretation
of the current: in a walk from a to z, any traversal of a side edge must be undone
at a later time. J

The network reduction techniques illustrated above are useful. But the power
of the electrical network perspective is more apparent in what comes next: the
definition of the effective resistance and, especially, its variational characterization.

Effective resistance Before proceeding further, let us recall our original moti-
vation. Let N = (G, c) be a countable, locally finite, connected network and
let (Xt) be the corresponding walk. Recall that a vertex a in G is transient if
Pa[⌧+a < +1] < 1.

To relate this to our setting, consider an exhaustive sequence of induced sub-
exhaustive
sequence

graphs Gn of G which for our purposes is defined as: G
0

contains only a, Gn ✓
Gn+1

, G =
S

nGn, and every Gn is finite and connected. Such a sequence always
exists by iteratively adding the neighbors of the previous vertices and using that G
is locally finite and connected. Let Zn be the set of vertices of G not in Gn. Then,
by Lemma ??, Pa[⌧Zn ^ ⌧+a = +1] = 0 for all n by our assumptions on (Gn).
Hence, the remaining possibilities are

1 = Pa[9n, ⌧+a < ⌧Zn ] + Pa[8n, ⌧Zn < ⌧+a ]

= Pa[⌧
+

a < +1] + lim
n

P[a ! Zn].

Therefore a is transient if and only if limn P[a ! Zn] > 0. Note that the limit ex-
ists because the sequence of events {⌧Zn < ⌧+a } is decreasing by construction. By
a sandwiching argument the limit also does not depend on the exhaustive sequence.
(Exercise.) Hence we define

P[a ! 1] := lim
n

P[a ! Zn] > 0.

We use Lemma 3.28 to characterize this limit using electrical network notions.
But, first, here comes the key definition. In Lemma 3.28, v(a) can be thought

of as the potential difference between the source and the sink, and kik can be
thought of as the total current flowing through the network from the source to the
sink. Hence, viewing the network as a single “super-edge,” Equation (3.23) is the
analogue of Ohm’s law if we interpret c(a)P[a ! Z] as a “conductance.”

Definition 3.32 (Effective resistance and conductance). Let N = (G, c) be a finite
or countable, locally finite, connected network. Let A = {a} and Z be disjoint
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non-empty subsets of the vertex set V such that W := V \(A [ Z) is finite. Let v
be a voltage from source a to sink Z and let i be the corresponding current. The
effective resistance between a and Z is defined as

effective
resistanceR(a $ Z) :=

1

c(a)P[a ! Z]
=

v(a)

kik ,

where the rightmost equality holds by Lemma 3.28. The reciprocal is called the
effective conductance and denoted by C (a $ Z) := 1/R(a $ Z).

effective
conductanceGoing back to recurrence, for an exhaustive sequence (Gn) with (Zn) as above,

it is natural to define

R(a $ 1) := lim
n

R(a $ Zn),

where, once again, the limit does not depend on the choice of exhaustive sequence.

Theorem 3.33 (Recurrence and resistance). Let N = (G, c) be a countable, lo-
cally finite, connected network. Vertex a (and hence all vertices) in N is transient
if and only if R(a $ 1) < +1.

Proof. This follows immediately from the definition of the effective resistance.
Recall that, on a connected network, all states have the same type (recurrent or type
transient).

Note that the network reduction techniques we discussed previously leave both
the voltage and the current strength unchanged on the reduced network. Hence
they also leave the effective resistance unchanged.

Example 3.34 (Gambler’s ruin chain revisited). Extend the gambler’s ruin chain
of Example 3.26 to all of Z

+

. We determine when this chain is transient. Because
it is irreducible, all states have the same type and it suffices to look at 0. Consider
the exhaustive sequence obtained by letting Gn be the graph restricted to [0, n� 1]
and letting Zn = [n,+1). To compute the effective resistance R(0 $ Zn), we
use the same reduction as in Example 3.26, except that this time we reduce the
network all the way to a single edge. That edge has resistance

R(0 $ Zn) =
n�1

X

j=0

r(j, j + 1) =
n�1

X

j=0

(q/p)j =
(q/p)n � 1

(q/p)� 1
,

when p 6= q, and similarly it has value n in the p = q case. Hence

R(0 $ 1) =

(

+1, p  1/2,
p

2p�1

, p > 1/2.

So 0 is transient if and only if p > 1/2. J
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Example 3.35 (Biased walk on the b-ary tree). Fix � 2 (0,+1). Consider the
rooted, infinite b-ary tree with conductance �j on all edges between level j�1 and
j, j � 1. We determine when this chain is transient. Because it is irreducible, all
states have the same type and it suffices to look at the root. Denote the root by 0.
For an exhaustive sequence, let Gn be the root together with the first n� 1 levels.
Let Zn be as before. To compute R(0 $ Zn): 1) glue together all vertices of Zn;
2) glue together all vertices on the same level of Gn; 3) replace parallel edges with a
single edge whose conductance is the sum of the conductances; 4) let the current on
this edge be the sum of the currents; and 5) leave the voltages unchanged. Note that
Ohm’s law and Kirchhoff’s node law are still satisfied. Hence we have not changed
the effective resistance. (This is an application of the parallel law.) The reduced
network is now a line. Denote the new vertices 0, 1, . . . , n. The conductance on
the edge between j and j + 1 is bj+1�j = b(b�)j . So this is the chain from the
previous example with (p/q) = b� where all conductances are scaled by a factor
of b. Hence

R(0 $ 1) =

(

+1, b�  1,
1

b(1�(b�)�1
)

, b� > 1.

So the root is transient if and only if b� > 1. J

3.3.3 Bounding the effective resistance

The examples we analyzed so far were atypical in that it was possible to reduce
the network down to a single edge using simple rules and read off the effective
resistance. In general, we need more robust techniques to bound the effective re-
sistance. The following two variational principles provide a powerful approach for
this purpose.

Variational principles Recall that flow ✓ from source a to sink Z on a countable,
flow

locally finite, connected network N = (G, c) is a function on pairs of adjacent
vertices such that: ✓ is anti-symmetric, i.e., ✓(x, y) = �✓(y, x) for all x ⇠ y;
and it satisfies the flow-conservation constraint

P

y⇠x ✓(x, y) = 0 on all vertices
x except those in {a} [ Z. The strength of the flow is k✓k :=

P

y⇠a ✓(a, y). The
current is a special flow—one that can be written as a potential difference according
to Ohm’s law. As we show next, it can also be characterized as a flow minimizing
a certain energy. Specifically, the energy of a flow ✓ is defined as energy

E (✓) =
1

2

X

x,y

r(x, y)[✓(x, y)]2.
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The proof of the variational principle we present here employs a neat trick, convex
duality. In particular, it reveals that the voltage and current are dual in the sense of
convex analysis.

Theorem 3.36 (Thomson’s principle). Let N = (G, c) be a finite, connected net-
work. The effective resistance between source a and sink Z is characterized by

R(a $ Z) = inf {E (✓) : ✓ is a unit flow between a and Z} . (3.28)

The unique minimizer is the unit current.

Proof. It will be convenient to work in matrix form. Choose an arbitrary orienta-
tion of N , i.e., replace each edge {x, y} with either hx, yi or hy, xi. Let

�!
G be the

corresponding directed graph. Think of the flow ✓ as a vector with one component
for each oriented edge. Then the flow constraint can be written as a linear system
A✓ = b. Here the matrix A has a column for each edge and a row for each vertex
except those in Z. The entries of A are of the form Ax,hx,yi = 1, Ay,hx,yi = �1,
and 0 otherwise. The vector b has 0s everywhere except for ba = 1. Let r be the
vector of resistances and let R be the diagonal matrix with diagonal r. In matrix
form the optimization problem (3.28) reads

E ⇤ = inf{✓0R✓ : A✓ = b},

where 0 denotes the transpose.
Introduce the Lagrangian

Lagrangian

L (✓;h) := ✓

0R✓ � 2h0(A✓ � b),

where h has an entry for all vertices except those in Z. (The reason for the factor
of 2 will be clear below.) For all h,

E ⇤ � inf
✓

L (✓;h),

because those ✓s with A✓ = b make the second term vanish in L (✓;h). Since
L (✓;h) is strictly convex as a function of ✓, the solution is characterized by the
usual optimality condition which in this case reads 2R✓ � 2A0

h = 0, or

✓ = R�1A0
h. (3.29)

Substituting into the Lagrangian and simplifying, we have proved that

E (✓) � E ⇤ � �h

0AR�1A0
h+ 2h0

b =: L ⇤(h), 8h and flow ✓. (3.30)
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This inequality is a statement of weak duality.
To show that a flow ✓ is optimal it suffices to find h such that the l.h.s. in (3.30)

equals E (✓) = ✓

0R✓. Not surprisingly, when ✓ is the unit current, the suitable h

turns out to be the corresponding voltage. To see this, observe that A0
h is the vector

of neighboring node differences

A0
h = (h(x)� h(y))hx,yi2�!G . (3.31)

Hence the optimality condition (3.29) is nothing but Ohm’s law in matrix form.
Therefore, if i is the unit current and v is the associated voltage in vector form, it
holds that

L ⇤(v) = L (i;v) = E (i),

where the first equality follows from the optimality of v and the second equality
follows from the fact that Ai = b. So we must have E (i) = E ⇤. As for uniqueness,
note that two minimizers ✓, ✓0 satisfy

E ⇤ =
E (✓) + E (✓0)

2
= E

✓

✓ + ✓

0

2

◆

+ E

✓

✓ � ✓

0

2

◆

.

The first term on the r.h.s. is greater or equal than E ⇤ because the average of two
unit flows is still a unit flow. The second term is nonnegative by definition. Hence
the latter must be zero and ✓ = ✓

0.
To conclude the proof, it remains to compute the optimal value. The matrix

�N := AR�1A0,

can be interpreted as the Laplacian operator of Section 3.3.1 in matrix form, i.e.,
for each row x it takes a conductance-weighted average of the neighboring values
and subtracts the value at x

�

AR�1A0
v

�

x
=

X

y:hx,yi2�!G

h

c(x, y)(v(x)� v(y))
i

�
X

y:hy,xi2�!G

h

c(y, x)(v(y)� v(x))
i

=
X

y⇠x

h

c(x, y)(v(x)� v(y))
i

,

where we used (3.31) and the fact that r(x, y)�1 = c(x, y) and c(x, y) = c(y, x).
So �Nv is zero everywhere except for the row corresponding to a where it is

X

y⇠a

c(a, y)[v(a)� v(y)] =
X

y⇠a

i(a, y) = 1,
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where we used Ohm’s law and the fact that the current has unit strength. We have
finally

E ⇤ = L ⇤(v) = �v

0AR�1A0
v + 2v0

b = �v(a) + 2v(a) = v(a) = R(a $ Z),

by (3.28), where used again that kik = 1.

Observe that the convex combination ↵ minimizing the sum of squares
P

j ↵
2

j

is uniform. In a similar manner, Thomson’s principle stipulates roughly speaking
that the more the flow can be spread out over the network, the lower is the effec-
tive resistance (penalizing flow on edges with higher resistance). Pólya’s theorem
below provides a vivid illustration. Here is a simple example suggesting that, in a
sense, the current is indeed a well distributed flow.

Example 3.37 (Random walk on the complete graph). Let N be the complete
graph on {1, . . . , n} with unit resistances, and let a = 1 and Z = {n}. Assume
n > 2. The effective resistance is straightforward to compute in this case. Indeed,
the escape probability (with a slight abuse of notation) is

P[1 ! n] =
1

n� 1
+

1

2

✓

1� 1

n� 1

◆

=
n

2(n� 1)
,

as we either jump to n immediately or jump to one of the remaining nodes, in which
case we reach n first with probability 1/2 by symmetry. Hence, since c(1) = n�1,
we get

R(1 $ n) =
2

n
,

from the definition of the effective resistance. We now look for the optimal flow.
Putting a flow of 1 on the edge (1, n) gives an upper bound of 1, which is far
from the optimal 2

n . Spreading the flow a bit more by pushing 1/2 through the
edge (1, n) and 1/2 through the path 1 ⇠ 2 ⇠ n gives the slightly better bound
1/4 + 2(1/4) = 3/4. Taking this further, putting a flow of 1

n�1

on (1, n) as well
as on each two-edge path to n through the remaining neighbors of 1 gives the yet
improved bound

1

(n� 1)2
+ 2(n� 2)

1

(n� 1)2
=

2n� 3

(n� 1)2
=

2

n
· 2n2 � 3n

2n2 � 4n+ 2
>

2

n
,

when n > 2. Because the direct path from 1 to n has a somewhat lower resistance,
the optimal flow is obtained by increasing the flow on that edge slightly. Namely,
for a flow ↵ on (1, n) we get an energy of ↵2+2(n�2)[1�↵

n�2

]2 which is minimized
at ↵ = 2

n where it is indeed
✓

2

n

◆

2

+
2

n� 2

✓

n� 2

n

◆

2

=
2

n

✓

2

n
+

n� 2

n

◆

=
2

n
.
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J
The matrix �N = AR�1A0 in the proof of Thomson’s principle is the Lapla-

cian matrix. As we noted above, because A0
h is the vector of neighboring node

Laplacian matrix
differences, we have

h

0�Nh =
1

2

X

x,y

c(x, y)[h(y)� h(x)]2,

where we implicitly fix h|Z ⌘ 0, which is called the Dirichlet energy. Thinking of
Dirichlet energy,
gradient

rN := A0 as a discrete gradient operator, the Dirichlet energy can be interpreted as
the weighted norm of the gradient of h. The following dual to Thomson’s principle
is essentially a reformulation of the Dirichlet problem. Exercise 3.6 asks for a
proof.

Theorem 3.38 (Dirichlet’s principle). Let N = (G, c) be a finite, connected net-
work. The effective conductance between source a and sink Z is characterized
by

C (a $ Z) = inf

(

1

2

X

x,y

c(x, y)[h(y)� h(x)]2 : h(a) = 1, h|Z ⌘ 0}
)

.

The unique minimizer is the voltage v with v(a) = 1.

The following lower bound is a typical application of Thomson’s principle. See
Pólya’s theorem below for an example of its use.

Definition 3.39 (Cutset). On a finite graph, a cutset separating a from Z is a set of cutset
edges ⇧ such that any path between a and Z must include at least one edge in ⇧.
Similarly, on a countable network, a cutset separating a from 1 is a set of edges
that must be crossed by any infinite self-avoiding path from a.

Corollary 3.40 (Nash-Williams inequality). Let N be a finite, connected network
and let {⇧j}nj=1

be a collection of disjoint cutsets separating source a from sink
Z. Then

R(a $ Z) �
n
X

j=1

0

@

X

e2⇧j

c(e)

1

A

�1

.

Similarly, if N is a countable, locally finite, connected network, then for any col-
lection {⇧j}j of finite, disjoint cutsets separating a from 1,

R(a $ 1) �
X

j

0

@

X

e2⇧j

c(e)

1

A

�1

.
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Proof. We will need the following lemma.

Lemma 3.41. Let N be finite. For any flow ✓ between a and Z and any cutset ⇧
separating a from Z, it holds that

X

e2⇧
|✓(e)| � k✓k.

Proof. Intuitively, the flow out of a must cross ⇧ to reach Z. Formally, let W
⇧

be the set of vertices reachable from a without crossing ⇧, let Z
⇧

be the set of
vertices not in W

⇧

that are incident with an edge in ⇧ and let V
⇧

= W
⇧

[Z
⇧

. For
x 2 W

⇧

\{a}, note that by definition of a cutset x /2 Z. Moreover, all neighbors of
x in V are in fact in V

⇧

: if y ⇠ x is not in Z
⇧

then it is reachable from a through
x without crossing ⇧ and therefore it is in W

⇧

. Hence,
X

y2V⇧ : y⇠x

✓(x, y) =
X

y2V : y⇠x

✓(x, y) = 0, (3.32)

or in other words ✓ is a flow from a to Z
⇧

on the graph G
⇧

induced by V
⇧

. By the
same argument, this flow has strength

X

y2V⇧ : y⇠a

✓(a, y) =
X

y2V : y⇠a

✓(a, y) = k✓k. (3.33)

By (3.32) and (3.33) and the anti-symmetry of ✓,

0 =
X

x2V⇧

X

y2V⇧ : y⇠x

✓(x, y)

= k✓k+
X

x2Z⇧

X

y2V⇧ : y⇠x

✓(x, y)

= k✓k+
X

x2Z⇧

X

y2Z⇧ : y⇠x

✓(x, y) +
X

x2Z⇧

X

y2W⇧ : y⇠x

✓(x, y)

= k✓k+
X

x2Z⇧

X

y2W⇧ : y⇠x

✓(x, y)

� k✓k �
X

e2⇧
|✓(e)|,

as x 2 Z
⇧

, y 2 W
⇧

, y ⇠ x implies {x, y} 2 ⇧. That concludes the proof.

Returning to the proof of the claim, consider the case where N is finite. For any
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unit flow from a to Z, by Cauchy-Schwarz and the lemma above

X

e2⇧j

c(e)
X

e2⇧j

r(e)[✓(e)]2 �
0

@

X

e2⇧j

p

c(e)r(e) |✓(e)|
1

A

2

=

0

@

X

e2⇧j

|✓(e)|
1

A

2

� 1.

Summing over j, using the disjointness of the cutsets, and rearranging gives the
result in the finite case.

The infinite case follows from a similar argument. Note that, after removing a
finite cutset ⇧ separating a from +1, the connected component containing a must
be finite by definition of ⇧.

Another typical application of Thomson’s principle is the following mono-
tonicity property (which is not obvious from a probabilistic point of view).

Corollary 3.42. Adding an edge to a finite, connected network cannot increase the
effective resistance between a source a and a sink Z. In particular, if the added
edge is not incident to a, then P[a ! Z] cannot decrease.

Proof. The additional edge enlarges the space of possible flows, so by Thomson’s
principle it can only lower the resistance or leave it as is. The second statement
follows from the definition of the effective resistance.

More generally:

Corollary 3.43 (Rayleigh’s principle). Let N and N 0 be two networks on the same
finite, connected graph G such that, for each edge in G, the resistance in N 0 is
greater than it is in N . Then, for any source a and sink Z,

RN (a $ Z)  RN 0(a $ Z).

Proof. Compare the energies of an arbitrary flow on N and N 0, and apply Thom-
son’s principle.

Application to recurrence Combining Theorem 3.33 and Thomson’s principle,
we derive a flow-based criterion for recurrence. To state the result, it is convenient
to introduce the notion of a unit flow ✓ from source a to 1 on a countable, locally

flow to 1
finite network: ✓ is anti-symmetric, it satisfies the flow-conservation constraint on
all vertices but a, and k✓k :=

P

y⇠a ✓(a, y) = 1. Note that the energy E (✓) of
such a flow is well defined in [0,+1].
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Theorem 3.44 (Recurrence and finite-energy flows). Let N = (G, c) be a count-
able, locally finite, connected network. Vertex a (and hence all vertices) in N is
transient if and only if there is a unit flow from a to 1 of finite energy.

Proof. One direction is immediate. Suppose such a flow exists and has energy
bounded by B < +1. Let (Gn) be an exhaustive sequence with associated sinks
(Zn). A unit flow from a to 1 on N yields, by projection, a unit flow from a to Zn.
This projected flow also has energy bounded by B. Hence Thomson’s principle
implies R(a $ Zn)  B for all n and transience follows from Theorem 3.33.

Proving the other direction involves producing a flow to 1. Suppose a is
transient and let (Gn) be an exhaustive sequence as above. Then Theorem 3.33
implies that R(a $ Zn)  R(a $ 1) < B for some B < +1 and Thomson’s
principle guarantees in turn the existence of a flow ✓n from a to Zn with energy
bounded by B. In particular there is a unit current in, and associated voltage vn,
of energy bounded by B. So it remains to use the sequence of current flows (in) to
construct a flow to 1 on the infinite network. The technical point is to show that
the limit of (in) exists and is indeed a flow. For this, consider the random walk
on N started at a. Let Yn(x) be the number of visits to x before hitting Zn the
first time. By the monotone convergence theorem, EaYn(x) ! EaY1(x) where
Y1(x) is the total number of visits to x. By (3.24), EaYn(x) = c(x)vn(x). So we
can now define

v1(x) := lim
n

vn(x),

and then

i1(x, y) := c(x, y)[v1(y)�v1(x)] = lim
n

c(x, y)[vn(y)�vn(x)] = lim
n

in(x, y),

by Ohm’s law (when n is large enough that both x and y are in Gn). Because in is
a flow for all n, by taking limits in the flow-conservation constraints we see that so
is i1. Note that the partial sums
X

x,y2Gn

c(x, y)[i1(x, y)]2 = lim
`�n

X

x,y2Gn

c(x, y)[i`(x, y)]
2  lim sup

`�n
E (i`) < B,

uniformly in n. Because the l.h.s. converges to the energy of i1 by the monotone
convergence theorem, we are done.

Example 3.45 (Random walk on trees: recurrence†). To be written. See [Per99,
Theorem 13.1]. J

We can now prove the following classical result.
†Requires: Section 2.2.4.
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Theorem 3.46 (Pólya’s theorem). Random walk on Ld is recurrent for d  2 and
transient for d � 3.

We prove the theorem for d = 2, 3 using the tools developed in this section.
The other cases follow by Rayleigh’s principle. Of course, there are elementary
proofs of this result. But we will show below that the electrical network approach
has the advantage of being robust to the details of the lattice. For a different argu-
ment, see Exercise 2.7.

Proof of Theorem 3.46. The case d = 2 follows from the Nash-Williams inequal-
ity by letting ⇧j be the set of edges connecting vertices of `1 norm j and j + 1.
(Recall that the `1 norm is defined as kxk1 = maxj |xj |.) Using the fact that
all conductances are 1, that |⇧j | = O(j), and that

P

j j
�1 diverges, recurrence is

established.
Now consider the case d = 3 and let a = 0. We construct a finite-energy flow

to 1 using the method of random paths. Note that a simple way to produce a unit
flow to 1 is to push a flow of 1 through an infinite self-avoiding path. Taking this
a step further, let µ be a probability measure on infinite self-avoiding paths and
define the anti-symmetric function

✓(x, y) := E[ hx,yi2� � hy,xi2�] = P[hx, yi 2 �]� P[hy, xi 2 �],

where � is a random path distributed according to µ, oriented away from 0. Ob-
serve that

P

y⇠x[ hx,yi2� � hy,xi2�] = 0 for any x 6= 0 because vertices visited
by � are entered and exited exactly once. That same sum is 1 at x = 0. Hence ✓ is
a unit flow to 1. Finally, for edge e = {x, y}, let

µ(e) := P[hx, yi 2 � or hy, xi 2 �] = P[hx, yi 2 �] + P[hy, xi 2 �] � ✓(x, y),

where we used that a self-avoiding path � cannot visit both hx, yi and hy, xi.
Thomson’s principle gives the following bound.

Claim 3.47 (Method of random paths).

R(0 $ 1) 
X

e

[µ(e)]2. (3.34)

For a measure µ concentrated on a single path, the sum above is infinite. To
obtain a useful bound, what we need is a large collection of spread out paths. On
the lattice L3, we construct µ as follows. Let U be a uniformly random point on
the unit sphere in R3 and let � be the ray from 0 to 1 going through U . Imagine
centering a unit cube around each point in Z3 whose edges are aligned with the
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axes. Then � traverses an infinite number of such cubes. Let � be the correspond-
ing self-avoiding path in the lattice L3. To see that this procedure indeed produces
a path observe that �, upon exiting a cube around a point z 2 Z3, enters the cube
of a neighboring point z0 2 Z3 through a face corresponding to the edge between
z and z0 on the lattice L3 (unless it goes through a corner of the cube, but this has
probability 0). To argue that µ distributes its mass among sufficiently spread out
paths, we bound the probability that a vertex is visited by �. Let z be an arbitrary
vertex in Z3. Because the sphere of radius kzk

2

around the origin in R3 has area
O(kzk2

2

) and its intersection with the unit cube centered around z has area O(1), it
follows that

P[z 2 �] = O
�

1/kzk2
2

�

.

That immediately implies a similar bound on the probability that an edge is visited
by �. Moreover:

Lemma 3.48. There are O(j2) edges with an endpoint at `2 distance within [j, j+
1] from the origin.

Proof. Consider a ball of `2 radius 1/2 centered around each vertex of `2 norm
within [j, j + 1]. These balls are non-intersecting and have total volume ⌦(Nj)
where Nj is the number of such vertices. On the other hand, the volume of the
shell of `2 inner and outer radii j � 1/2 and j + 3/2 centered around the origin is

4

3
⇡(j + 3/2)3 � 4

3
⇡(j � 1/2)3 = O(j2),

hence Nj = O(j2). Finally note that each vertex has 6 incident edges.

Plugging these bounds into (3.34), we get

R(0 $ 1) 
X

j

O(j2) · ⇥O(1/j2)
⇤

2

= O
⇣

P

j j
�2

⌘

< +1.

Transience follows from Theorem 3.44. (This argument clearly does not work on
L where there are only two rays. You should convince yourself that it does not
work on L2 either. But see Exercise 3.7.)

Finally we derive a useful general result illustrating the robustness reaped from
Thomson’s principle. At a high level, a rough embedding from N to N 0 is a
mapping of the edges of N to paths of N 0 of comparable overall resistance that
do not overlap much. The formal definition follows. As we will see, the purpose
of a rough embedding is to allow a flow on N to be morphed into a flow on N 0 of
comparable energy.
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Definition 3.49 (Rough embedding). Let N = (G, c) and N 0 = (G0, c0) be net-
works with resistances r and r0 respectively. We say that a map � from the vertices
of G to the vertices of G0 is a rough embedding if there are constants ↵,� < +1

rough
embedding

and a map � defined on the edges of G such that:

1. for every edge e = {x, y} in G, �(e) is a non-empty, self-avoiding path of
edges of G0 between �(x) and �(y) such that

X

e02�(e)

r0(e0)  ↵ r(e),

2. for every edge e0 in G0, there are no more than � edges in G whose image
under � contains e0.

(The map � need not be a bijection.)

We say that two networks are roughly equivalent if there exist rough embed-
rough
equivalence

dings between them, one in each direction.

Example 3.50 (Independent coordinates walk). Let N = Ld with unit resistances
and let N 0 be the network on the subset of Zd corresponding to (Y (1)

t , . . . , Y (d)
t ),

where the (Y (i)
t )s are independent simple random walks on Z started at 0. Note

that N 0 contains only those points of Zd with coordinates of identical parities. We
claim that the networks N and N 0 are roughly equivalent.

• N to N 0: Consider the map � which associates to each x 2 N a closest
point in N 0 chosen in some arbitrary manner. For �, associate to each edge
e = {x, y} 2 N a shortest path in N 0 between �(x) and �(y), again chosen
arbitrarily. If �(x) = �(y), choose an arbitrary, non-empty, shortest cycle
through �(x).

• N 0 to N : Consider the map � which associates to each x 2 N 0 the corre-
sponding point x in N . Construct � similarly to the previous case.

J

See Exercise 3.9 for an important generalization of the previous example. Our
main result about roughly equivalent networks is that they have the same type.

Theorem 3.51 (Recurrence and rough equivalence). Let N and N 0 be roughly
equivalent, locally finite, connected networks. Then N is transient if and only if
N 0 is transient.
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Figure 3.5: The flow on hx0, y0i is the sum of the flows on hx
1

, y
1

i, hx
2

, y
2

i, and
hx

3

, y
3

i.

Proof. Assume N is transient and let ✓ be a unit flow from some a to 1 of finite
energy. The existence of this flow is guaranteed by Theorem 3.44. Let �, � be a
rough embedding with parameters ↵ and �.

The basic idea of the proof is to map the flow ✓ onto N 0 using�. Because flows
are directional, it will be convenient to think of edges as being directed. Recall that
hx, yi denotes the directed edge from x to y. For e = {x, y} in N , we write
hx0, y0i 2 �!

� (x, y) to mean that {x0, y0} 2 �(e) and that x0 is visited before y0 in
the path �(e) from �(x) to �(y). (If �(x) = �(y), choose an arbitrary orientation
of the cycle �(e) for

�!
� (x, y) and the reversed orientation for

�!
� (y, x).) Then

define, for x0, y0 with {x0, y0} in N 0,

✓0(x0, y0) :=
X

hx,yi:hx0,y0i2�!� (x,y)

✓(x, y). (3.35)

See Figure 3.5.
We claim that ✓0 is a flow to 1 of finite energy on N 0. We first check that ✓0 is

a flow.

1. (Anti-symmetry) By construction, ✓0(y0, x0) = �✓0(x0, y0), i.e., ✓0 is antisym-
metric, because ✓ itself is anti-symmetric.
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2. (Flow conservation) Next we check the flow-conservation constraints. Fix
z0 in N 0. By Condition 2 in Definition 3.49, there are finitely many edges
e in N such �(e) visits z0. Let e = {x, y} be such an edge. There are two
cases:

- Assume first that �(x),�(y) 6= z0 and let hu0, z0i, hz0, w0i be the di-
rected edges incident with z0 on the path �(e) oriented from �(x) to
�(y). Observe that, in the definition of ✓0, hy, xi contributes ✓(y, x) =
�✓(x, y) to ✓0(z0, u0) and hx, yi contributes ✓(x, y) to ✓0(z0, w0). So
these contributions cancel out in the flow-conservation constraint for
z0, i.e., in the sum

P

v0⇠z0 ✓
0(z0, v0).

- If instead e = {x, y} is such that �(x) = z0, let hz0, w0i be the first edge
on the path �(e) from �(x) to �(y). Edge hx, yi contributes ✓(x, y) to
✓0(z0, w0). (A similar statement applies to �(y) = z0.)

From the two cases above, summing over all paths visiting z0 gives

X

v0:v0⇠z0

✓0(z0, v0) =
X

z:�(z)=z0

 

X

v⇠z

✓(z, v)

!

.

Because ✓ is a flow, the sum on the r.h.s. is 0 unless a 2 ��1({z0}) in which
case it is 1. We have shown that ✓0 is a unit flow from �(a) to 1.

It remains to bound the energy of ✓0. By (3.35), Cauchy-Schwarz, and Condi-
tion 2 in Definition 3.49,

✓0(x0, y0)2 =

2

6

4

X

hx,yi:hx0,y0i2�!� (x,y)

✓(x, y)

3

7

5

2



2

6

4

X

hx,yi:hx0,y0i2�!� (x,y)

1

3

7

5

2

6

4

X

hx,yi:hx0,y0i2�!� (x,y)

✓(x, y)2

3

7

5

 �
X

hx,yi:hx0,y0i2�!� (x,y)

✓(x, y)2.
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Summing over all pairs and using Condition 1 in Definition 3.49 gives

1

2

X

x0,y0

r0(x0, y0)✓0(x0, y0)2  �
1

2

X

x0,y0

r0(x0, y0)
X

hx,yi:hx0,y0i2�!� (x,y)

✓(x, y)2

= �
1

2

X

x,y

✓(x, y)2
X

hx0,y0i2�!� (x,y)

r0(x0, y0)

 ↵�
1

2

X

x,y

r(x, y)✓(x, y)2,

which is finite by assumption. That concludes the proof.

Example 3.52 (Independent coordinates walk (continued)). Consider again the
networks N and N 0 in Example 3.50. Because they are roughly equivalent, they
have the same type. This leads to yet another proof of Pólya’s theorem. Recall that,
because the number of returns to 0 is geometric with success probability equal to
the escape probability, random walk on N 0 is recurrent if and only if the expected
number of visits to 0 is finite. By independence of the coordinates, this expectation
can be written as

X

t�0

⇣

P
0

h

Y (1)

2t = 0
i⌘d

=
X

t�0

✓✓

2t

t

◆

2�2t

◆d

=
X

t�0

⇥(t�d/2),

where we used Stirling’s formula. The r.h.s. is finite if and only if d � 3. That
implies random walk on N 0 is transient under the same condition. By rough equiv-
alence, the same is true of N . J

Other applications So far we have emphasized applications to recurrence. Here
we show that electrical network theory can also be used to bound certain hitting
times. In Sections 3.3.5 and 3.3.6, we give further applications beyond random
walks on graphs.

An application of Lemma ?? gives another probabilistic interpretation of the
effective resistance—and a useful formula.

Theorem 3.53 (Commute time identity). Let N = (G, c) be a finite, connected
network with vertex set V . For x 6= y, let the commute time ⌧x,y be the time of the

commute time
first return to x after the first visit to y. Then

Ex[⌧x,y] = Ex[⌧y] + Ey[⌧x] = cN R(x $ y),

where cN = 2
P

e={x,y}2N c(e).
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Proof. This follows immediately from Lemma ?? and the definition of the effective
resistance. Specifically,

Ex[⌧y] + Ey[⌧x] =
1

⇡x(Px[⌧y < ⌧+x ])

=
1

{c(x)/(2Pe={x,y}2N c(e))}Px[⌧y < ⌧+x ]

= cN R(x $ y).

Example 3.54 (Random walk on the torus). Consider random walk on the d-
dimensional torus Ld

n with unit resistances. We use the commute time identity
to lower bound the mean hitting time Ex[⌧y] for arbitrary vertices x 6= y at graph
distance k on Ld

n. To use Theorem 3.53, note that by symmetry Ex[⌧y] = Ey[⌧x]
so that

Ex[⌧y] =
1

2
cN R(x $ y) = nd R(x $ y). (3.36)

To simplify, assume n is odd and identify the vertices of Ld
n with the box

B := {�(n� 1)/2, . . . , (n� 1)/2}d,

in Ld centered at x = 0. The rest of the argument is essentially identical to the first
half of the proof of Theorem 3.46. Let @B1

j = {z 2 Ld : kzk1 = j} and let
⇧j be the set of edges between @B1

j and @B1
j+1

. Note that on B the `1 norm of
y is at most k. Since the `1 norm is at least 1/d times the `1 norm on Ld, there
exists J = O(k) such that all ⇧js, j  J , are cutsets separating x from y. By the
Nash-Williams inequality

R(x $ y) �
X

0jJ

|⇧j |�1 =
X

0jJ

⌦
⇣

j�(d�1)

⌘

=

(

⌦(log k), d = 2

⌦(1), d � 3.

From (3.36), we get:

Claim 3.55.

Ex[⌧y] =

(

⌦(nd log k), d = 2

⌦(nd), d � 3.

J
Remark 3.56. The bounds in the previous example are tight up to constants. See [LPW06,
Proposition 10.13].
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3.3.4 . Random walk in a random environment: supercritical percola-
tion clusters

In this section, we apply the random paths approach to random walk on percolation
clusters.‡

To be written. See [LP, Section 5.5].

3.3.5 . Uniform spanning trees: Wilson’s method

In this section and the next one, we describe applications of electrical network the-
ory to topics seemingly unrelated to random walks on networks, namely uniform
spanning trees and Ising models on trees.

Uniform spanning trees Let G = (V,E) be a finite connected graph. Recall that
a spanning tree is a subtree of G containing all its vertices. A uniform spanning tree

uniform
spanning tree

is a spanning tree T chosen uniformly at random among all spanning trees of G.
(The reader interested only in Wilson’s method for generating uniform spanning
trees may jump ahead to the second half of this section.)

A fundamental property of uniform spanning trees is the following negative
correlation between edges.

Claim 3.57.

P[e 2 T | e0 2 T ]  P[e 2 T ], 8e 6= e0 2 G.

This property is perhaps not surprising. For one, the number of edges in a
spanning tree is fixed, so the inclusion of e0 makes it seemingly less likely for other
edges to be present. Yet proving Claim 3.57 is non-trivial. The only known proof
relies on the electrical network perspective developed in this section. The key to the
proof is a remarkable formula for the inclusion of an edge in a uniform spanning
tree.

Theorem 3.58 (Kirchhoff’s resistance formula). Let G = (V,E) be a finite, con-
nected graph and let N be the network on G with unit resistances. If T is a uniform
spanning tree on G, then for all e = {x, y}

P[e 2 T ] = R(x $ y).

Before explaining how this formula arises, we show that it implies Claim 3.57.
‡Requires: Section 2.2.
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Proof of Claim 3.57. By Bayes’ rule and a short calculation, we can instead prove

P[e 2 T | e0 /2 T ] � P[e 2 T ], (3.37)

unless P[e0 2 T ] 2 {0, 1} or P[e 2 T ] 2 {0, 1} in which case the claim is vacuous.
(In fact these probabilities cannot be 0. Why? Can they be equal to 1?) Picking
a uniform spanning tree on N conditioned on {e0 /2 T} is the same as picking
a uniform spanning tree on the modified network N 0 where e0 is removed. By
Rayleigh’s principle,

RN 0(x $ y) � RN (x $ y),

and Kirchhoff’s resistance formula gives (3.37).

Remark 3.59. More generally, thinking of a uniform spanning tree T as a random subset
of edges, the law of T has the property of negative associations, defined as follows. An
event A ✓ 2E is said to be increasing if ! [ {e} 2 A whenever ! 2 A. The event A
is said to depend only on F ✓ E if for all !

1

,!
2

2 2E that agree on F , either both
are in A or neither is. The law, P

T

, of T has negative associations in the sense that for
any two increasing events A and B that depend only on disjoint sets of edges, we have
P
T

[A\B]  P
T

[A]P
T

[B], i.e., A and B are negatively correlated. See [LP, Exercise 4.6].
(To see why the events considered depend on disjoint edges, see for instance what happens
when A ✓ B.)

Let e = {x, y}. To get some insight into Kirchhoff’s resistance formula, we
first note that, if i is the unit current from x to y and v is the associated voltage, by
definition of the effective resistance

R(x $ y) =
v(x)

kik = c(e)(v(x)� v(y)) = i(x, y), (3.38)

where we used Ohm’s law as well as the fact that c(e) = 1, v(y) = 0, and kik = 1.
Note the difference between kik and i(x, y). Although kik = 1, i(x, y) is only the
current along the edge to y. Furthermore by the probabilistic interpretation of the
current, with Z = {y},

i(x, y) = Ex[N
Z
x!y �NZ

y!x] = Px [hx, yi is traversed before ⌧y] . (3.39)

Indeed, started at x, NZ
y!x = 0 and NZ

x!y 2 {0, 1}. Kirchhoff’s resistance for-
mula is then established by relating the random walk on N to the probability that
e is present in a uniform spanning tree T . To do this we introduce a random-walk-
based algorithm for generating uniform spanning trees. This rather miraculous
procedure, known as Wilson’s method, is of independent interest. For a classical
connection between random walks and spanning trees, see Exercise 3.11.
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Figure 3.6: An illustration of Wilson’s method. The dotted lines indicate erased
loops.

Wilson’s method It will be somewhat more transparent to work in a more gen-
eral context. Let N = (G, c) be a finite, connected network on G with arbitrary
conductances and define the weight of a spanning tree T on N as

W (T ) =
Y

e2T
c(e).

With a slight abuse, we continue to call a tree T picked at random among all span-
ning trees of G with probability proportional to W (T ) a “uniform” spanning tree
on N .

To state Wilson’s method, we need the notion of loop erasure. Let P = x
0

⇠
loop erasure

. . . ⇠ xk be a path in N . The loop erasure of P is obtained by removing cycles in
the order they appear. That is, let j⇤ be the smallest j such that xj = x` for some
` < j. Remove the subpath x`+1

⇠ · · · ⇠ xj from P , and repeat. The resulting
self-avoiding path is denoted by LE(P).

Let ⇢ be an arbitrary vertex of G, which refer to as the root, and let T
0

be
the subtree made up of ⇢ alone. Order arbitrarily the vertices v

0

, . . . , vn�1

of G,
starting with the root v

0

:= ⇢. Wilson’s method constructs an increasing sequence
of subtrees as follows. See Figure 3.6. Let T := T

0

.

1. Let v be the vertex of G not in T with lowest index. Perform random walk
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on N started at v until the first visit to a vertex of T . Let P be the resulting
path.

2. Add the loop erasure LE(P) to T .

3. Repeat until all vertices of G are in T .

Let T
0

, . . . , Tm be the sequence of subtrees produced by Wilson’s method.

Claim 3.60. Forgetting the root, Tm is a uniform spanning tree on N .

This claim is far from obvious. Before proving it, we finish the proof of Kirch-
hoff’s resistance formula.

Proof of Theorem 3.58. From (3.38) and (3.39), it suffices to prove that, for e =
{x, y},

Px [hx, yi is traversed before ⌧y] = P[e 2 T ],

where the probability on the l.h.s. refers to random walk on N started at x and
the probability on the r.h.s. refers to a uniform spanning tree T on N . Generate T
using Wilson’s method started at root ⇢ = y with the choice v

1

= x. If the sample
path from x to y during the first iteration of Wilson’s method includes hx, yi, then
the loop erasure is simply x ⇠ y and e is in T . On the other hand, if the sample
path from x to y does not include hx, yi, then e cannot be used at a later stage
because it would create a cycle. That immediately proves the claim.

It remains to prove the claim.

Proof of Claim 3.60. The idea of the proof is to cast Wilson’s method in the more
general framework of cycle popping algorithms. We begin by explaining how such
algorithms work.

Let P be the transition matrix corresponding to random walk on N = (G, c)
with G = (V,E). To each vertex x 6= ⇢ in V , we assign an independent stack of
directed edges

Sx
0

:= (hx, Y x
1

i
1

, hx, Y x
2

i
2

, . . .)

where each Y x
j is chosen independently at random from the distribution P (x, · ).

In particular all Y x
j s are neighbors of x in N . The index j in hx, Y x

j ij is usually
referred to as the color of the edge. It keeps track of the position of the edge in the

color
original stack. (Picture Sx as a spring-loaded plate dispenser located on vertex x.)

We consider a process which involves popping edges off the stacks. We use
the notation Sx to denote the current stack at x. The initial assignment of the
stack is Sx := Sx

0

as above. Given the current stacks (Sx), we call visible graph
visible graph

the directed graph over V with edges Top(Sx) for all x 6= ⇢, where Top(Sx) is
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the first edge in the current stack Sx. The latter are referred to as visible edges.
visible edge

We denote the current visible graph by
�!
G�. Note that

�!
G� has out-degree 1 for

all x 6= ⇢ and the root has out-degree 0. In particular all (undirected) cycles in�!
G� are in fact directed cycles. Indeed, a set of edges forming a cycle that is not
directed must have a vertex of out-degree 2. Recall the following characterization
(see Lemma ??): a cycle-free undirected graph with n vertices and n� 1 edges is
a spanning tree. Hence, if there is no cycle in

�!
G� then it must be a spanning tree

where, furthermore, all edges point towards the root. Such a tree is also known as
a spanning arborescence.

spanning
arborescence

As the name suggests, a cycle popping algorithm proceeds by popping cycles
in

�!
G� off the tops of the stacks until a spanning arborescence is produced. That

is, at every iteration, if
�!
G� contains at least one cycle, then a cycle

�!
C is picked

according to some rule, the top of each stack in
�!
C is popped, and a new visible

graph
�!
G� is revealed. See Figure 3.7 for an illustration.

With these definitions in place, the proof of the claim involves the following
steps.

1. Wilson’s method is a cycle popping algorithm. We can think of the initial
stacks (Sx

0

) as corresponding to picking—ahead of time—all potential tran-
sitions in the random walks used by Wilson’s method. With this represen-
tation, Wilson’s method boils down to a recipe for choosing which cycle to
pop next. Indeed, at each iteration, we start from a vertex v not in the current
tree T . Following the visible edges from v traces a path whose distribution
is that of random walk on N . Loop erasure then corresponds to popping
cycles. We pop only those visible edges on the removed cycles as they orig-
inate from vertices that will be visited again by the algorithm and for which
a new transition will then be needed. Those visible edges in the remaining
loop-erased path are not popped—they are part of the final arborescence.

2. The popping order does not matter. We just argued that Wilson’s method is a
cycle popping algorithm. In fact we claim that any cycle popping algorithm,
i.e., no matter what popping choices are made along the way, produces the
same final arborescence. To make this precise, we identify the popped cy-
cles uniquely. This is where the colors come in. A colored cycle is a directed

colored cycle
cycle over V made of colored edges from the stacks (not necessarily of the
same color and not necessarily in the current visible graph). We say that a
colored cycle

�!
C is poppable for a visible graph

�!
G� if there exists a sequence

poppable cycle
of colored cycles

�!
C

1

, . . . ,
�!
C r =

�!
C that can be popped in that order starting

from
�!
G�. Note that, by this definition,

�!
C

1

is a directed cycle in
�!
G�. Now
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Figure 3.7: A realization of a cycle popping algorithm (from top to bottom). In all
three figures, the underlying graph is G while the arrows depict the visible edges.
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we claim that if
�!
C 0

1

were popped first instead of
�!
C

1

, producing the new vis-
ible graph

�!
G 0�, then

�!
C would still be poppable for

�!
G 0�. This claim implies

that, in any cycle popping algorithm, either an infinite number of cycles are
popped or eventually all poppable cycles are popped—independently of the
order—producing the same outcome. To prove the claim, note first that if�!
C 0

1

=
�!
C or if

�!
C 0

1

does not share a vertex with any of
�!
C

1

, . . . ,
�!
C r there

is nothing to prove. So let
�!
C j be the first cycle in the sequence sharing a

vertex with
�!
C 0

1

, say x. Let hx, yic and hx, y0ic0 be the colored edges em-
anating from x in

�!
C j and

�!
C 0

1

respectively. By definition, x is not on any
of

�!
C

1

, . . . ,
�!
C j�1

so the edge originating from x is not popped by that se-
quence and we must have hx, yic = hx, y0ic0 as colored edges. In particular,
the vertex y is also a shared vertex of

�!
C j and

�!
C 0

1

, and the same argument
applies to it. Proceeding by induction leads to the conclusion that

�!
C 0

1

=
�!
C j

as colored cycles. But then
�!
C is clearly poppable for the visible graph re-

sulting from popping
�!
C 0

1

first, because it can be popped with the rearranged
sequence

�!
C 0

1

=
�!
C j ,

�!
C

1

, . . . ,
�!
C j�1

,
�!
C j+1

, . . . ,
�!
C r =

�!
C , where we used

the fact that
�!
C 0

1

does not share a vertex with
�!
C

1

, . . . ,
�!
C j�1

.

3. Termination occurs in finite time almost surely. We have shown so far that, in
any cycle popping algorithm, either an infinite number of cycles are popped
or eventually all poppable cycles are popped. But Wilson’s method—a cycle
popping algorithm as we have shown—stops after a finite amount of time
with probability 1. Indeed, because the network is finite and connected, the
random walk started at each iteration hits the current T in finite time almost
surely (by Lemma ??). To sum up, all cycle popping algorithms terminate
and produce the same spanning arborescence. It remains to compute the
distribution of the outcome.

4. The arborescence has the desired distribution. Let A be the spanning ar-
borescence produced by any cycle popping algorithm on the stacks (Sx

0

). To
compute the distribution of A, we first compute the distribution of a par-
ticular cycle popping realization leading to A. Because the popping order
does not matter, by “realization” we mean a collection C of colored cycles
together with a final spanning arborescence A. Notice that what lies in the
stacks under A is not relevant to the realization, i.e., the same outcome is
produced no matter what is under A. So, from the distribution of the stacks,
the probability of observing (C,A) is simply the product of the transitions

112



corresponding to the directed edges in C and A, i.e.,
Y

~e2C[A
P (~e) =  (A)

Y

�!
C2C

 
⇣�!
C
⌘

,

where the function  returns the product of the transition probabilities of
a set of directed edges. Thanks to the product form on the r.h.s., summing
over all possible Cs gives that the probability of producing A is proportional
to  (A). For this argument to work though, there are two small details
to take care of. First, note that we want the probability of the uncolored
arborescence. But observe that, in fact, there is no need to keep track of the
colors on the edges of A because these are determined by C. Secondly, we
need for the collection of possible Cs not to vary with A. But it is clear that
any arborescence could lie under any C.

To see that we are done, let T be the undirected spanning tree corresponding to
the outcome, A, of Wilson’s method. Then, because P (x, y) = c(x,y)

c(x) , we get

 (A) =
W (T )

Q

x6=⇢ c(x)
,

where note that the denominator does not depend on T . So if we forget the ori-
entation of A, which is determined by the root, we get a spanning tree whose
distribution is proportional to W (T ), as required.

3.3.6 . Ising model on trees: the reconstruction problem

To be written. See [Per99, Section 16].

Exercises

Exercise 3.1 (Azuma-Hoeffding: a second proof). This exercise leads the reader
through an alternative proof of the Azuma-Hoeffding inequality.

a) Show that for all x 2 [�1, 1] and a > 0

eax  cosh a+ x sinh a.

b) Use a Taylor expansion to show that for all x

coshx  ex
2/2.
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c) Let X
1

, . . . , Xn be (not necessarily independent) random variables such that,
for all i, |Xi|  ci for some constant ci < +1 and

E [Xi1 · · ·Xik ] = 0, 8 1  k  n, 8 1  i
1

< · · · < ik  n. (3.40)

Show, using a) and b), that for all b > 0

P
"

n
X

i=1

Xi � b

#

 exp

✓

� b2

2
Pn

i=1

c2i

◆

.

d) Prove that c) implies the Azuma-Hoeffding inequality as stated in Theo-
rem 3.1.

e) Show that the random variables in Exercise 2.5 do not satisfy (3.40) (without
using the claim in part b) of that exercise).

Exercise 3.2 (Kirchhoff’s laws). Consider a finite, connected network with a source
and a sink. Show that an anti-symmetric function on the edges satisfying Kirch-
hoff’s two laws is a current function (i.e., it corresponds to a voltage function
through Ohm’s law).

Exercise 3.3 (Dirichlet problem: non-uniqueness). Let (Xt) be the birth-and-death
chain on Z

+

with P (x, x + 1) = p and P (x, x � 1) = 1 � p for all x � 1, and
P (0, 1) = 1, for some 0 < p < 1. Fix h(0) = 1.

a) When p > 1/2, show that there is more than one bounded extension of h to
Z
+

\{0} that is harmonic on Z
+

\{0}. [Hint: Consider Px[⌧0 = +1].]

b) When p  1/2, show that there exists a unique bounded extension of h to
Z
+

\{0} that is harmonic on Z
+

\{0}.

Exercise 3.4 (Maximum principle). Let N = (G, c) be a finite or countable, con-
nected network with G = (V,E). Let W be a finite, connected, proper subset of
V .

a) Let h : V ! R be a function on V . Prove the maximum principle: if h is
harmonic on W , i.e., it satisfies

h(x) =
1

c(x)

X

y⇠x

c(x, y)h(y), 8x 2 W,

and if h achieves its supremum on W , then h is constant on W [ @VW ,
where

@VW = {z 2 V \W : 9y 2 W, y ⇠ z}.
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b) Let h : W c ! R be a bounded function on W c := V \W . Let h
1

and h
2

be extensions of h to W that are harmonic on W . Use part a) to prove that
h
1

⌘ h
2

.

Exercise 3.5 (Effective resistance: metric). Show that effective resistances be-
tween pairs of vertices form a metric.

Exercise 3.6 (Dirichlet principle: proof). Prove Theorem 3.38.

Exercise 3.7 (Random walk on L2: effective resistance). Consider random walk
on L2, which we showed is recurrent. Let (Gn) be the exhaustive sequence cor-
responding to vertices at distance at most n from the origin and let Zn be the
corresponding sink-set. Show that R(0 $ Zn) = ⇥(log n). [Hint: Use the Nash-
Williams inequality and the method of random paths.]

Exercise 3.8 (Random walk on regular graphs: effective resistance). Let G be a
d-regular graph with n vertices and d > n/2. Let N be the network (G, c) with
unit conductances. Let a and z be arbitrary distinct vertices.

a) Show that there are at least 2d� n vertices x 6= a, z such that a ⇠ x ⇠ z is
a path.

b) Prove that

R(a $ z)  2rn

2r � n
.

Exercise 3.9 (Rough isometries). Graphs G = (V,E) and G0 = (V 0, E0) are
roughly isometric (or quasi-isometric) if there is a map � : V ! V 0 and constants

rough isometry
0 < ↵,� < +1 such that for all x, y 2 V

↵�1d(x, y)� �  d0(�(x),�(y))  ↵d(x, y) + �,

where d and d0 are the graph distances on G and G0 respectively, and furthermore
all vertices in G0 are within distance � of the image of V . Let N = (G, c) and
N 0 = (G0, c0) be countable, connected networks with uniformly bounded con-
ductances, resistances and degrees. Prove that if G and G0 are roughly isometric
then N and N 0 are roughly equivalent. [Hint: Start by proving that being roughly
isometric is an equivalence relation.]

Exercise 3.10 (Random walk on the cycle: hitting time). Use the commute time
identity to compute Ex[⌧y] in Example 3.54 in the case d = 1. Give a second proof
using a direct martingale argument.
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Exercise 3.11 (Markov chain tree theorem). Let P be the transition matrix of a fi-
nite, irreducible Markov chain with stationary distribution ⇡. Let G be the directed
graph corresponding to the positive transitions of P . For an arborescence A of G,
define its weight as

 (A) =
Y

~e2A
P (~e).

Consider the following process on spanning arborescences over G. Let ⇢ be the
root of the current spanning arborescence A. Pick an outgoing edge ~e = h⇢, xi of
⇢ according to P (⇢, · ). Add ~e to A. This creates a cycle. Remove the edge of this
cycle originating from x, producing a new arborescence A0 with root x. Repeat the
process.

a) Show that this chain is irreducible.

b) Show that  is a stationary measure for this chain.

c) Prove the Markov chain tree theorem: The stationary distribution ⇡ of P is
proportional to

⇡x =
X

A : root(A)=x

 (A).
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