
Chapter 4

Coupling

4.1 Background

To be written. See [dH, Section 2].

4.1.1 . Erdös-Rényi graphs: degree sequence

To be written. See [vdH14, Section 5.3].

4.1.2 . Harmonic functions: lattices and trees

To be written. See [Per, Section 6].⇤

4.2 Stochastic domination and correlation inequalities

It can be useful to compare the distributions of two random variables. For instance
let (Xi)

n
i=1

be independent Z
+

-valued random variables with P[Xi � 1] � p and
consider their sum S =

Pn
i=1

Xi. If S⇤ ⇠ Bin(n, p), then it is intuitively clear
that one can extract information about S by studying S⇤ instead—which may be
easier. Indeed, in some sense, S “dominates” S⇤ and one would expect that, say,
P[S > x] � P[S⇤ > x] among other relations. Coupling provides a way to make
this intuition formal, as we detail in this section.

In particular we study an important special case known as positive association.
In that case a measure “dominates itself” in the following sense: conditioning on
certain events makes other events more likely. This concept, which is formalized
in Section 4.2.4, has numerous applications in discrete probability.

⇤Requires: Section 3.3.1.
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Figure 4.1: The law of X , represented here by its cumulative distribution function
FX in red, stochastically dominates the law of Y , in orange. The construction of a
monotone coupling, (X̂, Ŷ ) := (F�1

X (U), F�1

Y (U)) where U is uniform in [0, 1],
is also depicted.

4.2.1 Definitions

We start with the case of real random variables.

Ordering of real random variables For real random variables, stochastic dom-
ination is defined as follows. See Figure 4.1 for an illustration.

Definition 4.1 (Stochastic domination). Let µ and ⌫ be probability measures on R.
The measure µ is said to stochastically dominate ⌫, denoted µ ⌫ ⌫, if for all x 2 R

stochastic
dominationµ

⇥

(x,+1)
⇤ � ⌫

⇥

(x,+1)
⇤

.

A real random variable X stochastically dominates Y , denoted by X ⌫ Y , if the
law of X dominates the law of Y .

Example 4.2 (Bernoulli vs. Poisson). Let X ⇠ Poi(�) be Poisson with mean
� > 0 and let Y be a Bernoulli trial with success probability p 2 (0, 1), i.e.,
P[Y = 1] = 1 � P[Y = 0] = p. In order for X to stochastically dominate Y , it
suffices to have

P[X > `] � P[Y > `], 8` � 0.
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This is always true for ` � 1 since P[X > `] > 0 but P[Y > `] = 0. So it remains
to consider the case ` = 0. We have

1� e�� = P[X > 0] � P[Y > 0] = p,

if and only if
� � � log(1� p).

J
Note that stochastic domination does not require X and Y to be defined on

the same probability space. The connection to coupling arises from the following
characterization.

Theorem 4.3 (Coupling and stochastic domination). The real random variable X
stochastically dominates Y if and only if there is a coupling (X̂, Ŷ ) of X and Y
such that

P[X̂ � Ŷ ] = 1. (4.1)

We refer to (X̂, Ŷ ) as a monotone coupling of X and Y . monotone
couplingProof. One direction is clear. Suppose there is such a coupling. Then for all x 2 R

P[Y > x] = P[Ŷ > x] = P[X̂ � Ŷ > x]  P[X̂ > x] = P[X > x].

For the other direction, define the cumulative distribution functions FX(x) =
P[X  x] and FY (x) = P[Y  x]. Assume X ⌫ X 0. The idea of the proof
is to use the following standard way of generating a real random variable. Recall
(e.g. [Dur10, Section 1.2]) that

X
d

= F�1

X (U), (4.2)

where U is a [0, 1]-valued uniform random variable and

F�1

X (u) := inf{x 2 R : FX(x) � u},
is a generalized inverse. Indeed F�1

X (u) > x precisely when u > FX(x). It
is natural to construct a coupling of X and Y by simply using the same uniform
random variable U in this representation, i.e., we define X̂ = F�1

X (U) and Ŷ =
F�1

Y (U). See Figure 4.1. By (4.2), this is a coupling of X and Y . It remains
to check (4.1). Because FX(x)  FY (x) for all x by definition of stochastic
domination, by the definition of the generalized inverse,

P[X̂ � Ŷ ] = P[F�1

X (U) � F�1

Y (U)] = 1,

as required.
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Example 4.4. Returning to the example in the first paragraph of Section 4.2, let
(Xi)

n
i=1

be independent Z
+

-valued random variables with P[Xi � 1] � p and
consider their sum S :=

Pn
i=1

Xi. Further let S⇤ ⇠ Bin(n, p). Write S⇤ as the
sum

Pn
i=1

Yi where (Yi) are independent {0, 1}-variables with P[Yi = 1] = p. To
couple S and S⇤, first set (Ŷi) := (Yi) and Ŝ⇤ :=

Pn
i=1

Ŷi. Let X̂i be 0 whenever
Ŷi = 0. Otherwise, i.e. if Ŷi = 1, generate X̂i according to the distribution of
Xi conditioned on {Xi � 1}, independently of everything else. By construction
X̂i � Ŷi a.s. for all i and as a result

Pn
i=1

X̂i =: Ŝ � Ŝ⇤ a.s. or S ⌫ S⇤ by
the previous theorem. That implies for instance that P[S > x] � P[S⇤ > x] as
we claimed earlier. A special case of this argument gives the following useful fact
about binomials

n � m, q � p =) Bin(n, q) ⌫ Bin(m, p).

J

Example 4.5 (Poisson distribution). Let X ⇠ Poi(µ) and Y ⇠ Poi(⌫) with µ > ⌫.
Recall that a sum of independent Poisson is Poisson (use moment-generating func-
tions or see e.g. [Dur10, Exercise 2.1.14]). This fact leads to a natural coupling: let
Ŷ ⇠ Poi(⌫), Ẑ ⇠ Poi(µ� ⌫) independently of Y , and X̂ = Ŷ + Ẑ. Then (X̂, Ŷ )
is a coupling and X̂ � Ŷ a.s. because Ẑ � 0. Hence X ⌫ Y . J

We record two useful consequences of Theorem 4.3.

Corollary 4.6. Let X and Y be real random variables with X ⌫ Y and let f :
R ! R be a non-decreasing function. Then f(X) ⌫ f(Y ) and furthermore,
provided E|f(X)|,E|f(Y )| < +1, we have that

E[f(X)] � E[f(Y )].

Proof. Let (X̂, Ŷ ) be the monotone coupling of X and Y whose existence is guar-
anteed by Theorem 4.3. Then f(X̂) � f(Ŷ ) a.s. so that, provided the expectations
exist,

E[f(X)] = E[f(X̂)] � E[f(Ŷ )] = E[f(Y )],

and furthermore (f(X̂), f(Ŷ )) is a monotone coupling of f(X) and f(Y ). Hence
f(X) ⌫ f(Y ).

Corollary 4.7. Let X
1

, X
2

be independent random variables. Let Y
1

, Y
2

be inde-
pendent random variables such that Xi ⌫ Yi, i = 1, 2. Then

X
1

+X
2

⌫ Y
1

+ Y
2

.
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Proof. Let (X̂
1

, Ŷ
1

) and (X̂
2

, Ŷ
2

) be independent, monotone couplings of (X
1

, Y
1

)
and (X

2

, Y
2

) (on the same probability space). Then

X
1

+X
2

⇠ X̂
1

+ X̂
2

� Ŷ
1

+ Ŷ
2

⇠ Y
1

+ Y
2

.

Example 4.8 (Binomial vs. Poisson). A sum of n Poisson variables with mean �
is Poi(n�). A sum of n Bernoulli trials with success probability p is Bin(n, p).
Using Example 4.2 and Corollary 4.7, we get

� � � log(1� p) =) Poi(n�) ⌫ Bin(n, p). (4.3)

The following special case will be useful later. Let 0 < ⇤ < 1 and let m be an
integer. Then

⇤

m� 1
� ⇤

m� ⇤
=

m

m� ⇤
� 1 � log

✓

m

m� ⇤

◆

= � log

✓

1� ⇤

m

◆

,

where we used that log x  x � 1 for all x 2 R. So, setting � := ⇤

m�1

, p := ⇤

m
and n := m� 1 in (4.3), we get

⇤ 2 (0, 1) =) Poi(⇤) ⌫ Bin

✓

m� 1,
⇤

m

◆

. (4.4)

J

Ordering on partially ordered sets The definition of stochastic domination
hinges on the totally ordered nature of R. It also extends naturally to posets. Let
(X ,) be a poset, i.e., for all x, y, z 2 X : poset

- [Reflexivity] x  x,

- [Antisymmetry] if x  y and y  x then x = y,

- [Transitivity] if x  y and y  z then x  z.

For instance the set {0, 1}F is a poset when equipped with the relation x  y if
and only if xi  yi for all i 2 F . Equivalently the subsets of F , denoted by 2F ,
form a poset with the inclusion relation. (A totally ordered set satisfies in addition
that, for any x, y, we have either x  y or y  x.)

Let F be a �-field over the poset X . An event A 2 F is increasing if x 2 A
increasing event,
function

implies that any y � x is also in A. A function f : X ! R is increasing if x  y
implies f(x)  f(y).
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Definition 4.9 (Stochastic domination for posets). Let (X ,) be a poset and let F
be a �-field on X . Let µ and ⌫ be probability measures on (X ,F). The measure µ
is said to stochastically dominate ⌫, denoted by µ ⌫ ⌫, if for all increasing A 2 F

stochastic
domination for
posets

µ(A) � ⌫(A).

An X -valued random variable X stochastically dominates Y , denoted by X ⌫ Y ,
if the law of X dominates the law of Y .

As before, a monotone coupling (X̂, Ŷ ) of X and Y is one which satisfies monotone
coupling for
posets

X̂ � Ŷ a.s.

Example 4.10 (Monotonicity of the percolation function). We have already seen
an example of stochastic domination in Section 2.1.5. Consider bond percolation
on the d-dimensional lattice Ld. Here the poset is the collection of all subsets
of edges, specifying the open edges, with the inclusion relation. Recall that the
percolation function is given by

✓(p) := Pp[|C0| = +1],

where C
0

is the open cluster of the origin. We argued in Section 2.1.5 that ✓(p) is
non-decreasing by considering the following alternative representation of the per-
colation process under Pp: to each edge e, assign a uniform [0, 1]-valued random
variable Ue and declare the edge open if Ue  p. Using the same Ues for two
different p-values, p

1

< p
2

, gives a monotone coupling of the processes for p
1

and p
2

. It follows immediately that ✓(p
1

)  ✓(p
2

), where we used that the event
{|C

0

| = +1} is increasing. J

The existence of a monotone coupling is perhaps more surprising for posets.
We prove the result in the finite case only, which will be enough for our purposes.

Theorem 4.11 (Strassen’s theorem). Let X and Y be random variables taking
values in a finite poset (X ,) with the �-field F = 2X . Then X ⌫ Y if and only
if there exists a monotone coupling (X̂, Ŷ ) of X and Y .

Proof. One direction is clear. Suppose there is such a coupling. Then for all in-
creasing A

P[Y 2 A] = P[Ŷ 2 A] = P[X̂ � Ŷ 2 A]  P[X̂ 2 A] = P[X 2 A].

The proof in the other direction relies on the max-flow min-cut theorem. To
see the connection with flows, let µX and µY be the laws of X and Y respectively,
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and denote by ⌫ their joint distribution under the desired coupling. Noting that we
want ⌫(x, y) = 0 if x  y, the marginal conditions on the coupling read

X

yx

⌫(x, y) = µX(x), 8x 2 X ,

and
X

x�y

⌫(x, y) = µY (y), 8y 2 X .

These equations can be interpreted as flow-conservation constraints. Consider
the following directed graph. There are two vertices, (w, 1) and (w, 2), for each el-
ement w in X with edges connecting each (x, 1) to those (y, 2)s with x � y. These
edges have capacity +1. In addition there is a source a and a sink z. The source
has a directed edge of capacity µX(x) to (x, 1) for each x 2 X and, similarly, each
(y, 2) has a directed edge of capacity µY (y) to the sink. The existence of a mono-
tone coupling will follow once we show that there is a flow of strength 1 between a
and z. Indeed, in that case, all edges from the source and all edges to the sink are at
capacity. If we let ⌫(x, y) be the flow on edge h(x, 1), (y, 2)i, the constraints above
then impose the conservation of the flow on the vertices (X ⇥ {1}) [ (X ⇥ {2}).
Hence the flow between X ⇥ {1} and X ⇥ {2} yields the desired coupling. See
Figure 4.2.

By the max-flow min-cut theorem, it suffices to show that a minimum cut has
capacity 1. Such a cut is of course obtained by choosing all edges out of the source.
So it remains to show that no cut has capacity less than 1. This is where we use the
fact that µX(A) � µY (A) for all increasing A. Because the edges between X⇥{1}
and X ⇥ {2} have infinite capacity, they cannot be used in a minimum cut. So we
can restrict our attention to those cuts containing edges from a to A⇤ ⇥ {1} and
from Z⇤ ⇥ {2} to z for subsets A⇤, Z⇤ ✓ X . We must have

A⇤ ◆ {x 2 X : 9y 2 Zc
⇤, x � y},

to block all paths of the form a ⇠ (x, 1) ⇠ (y, 2) ⇠ z with x and y as above. In
fact, for a minimum cut, we further have

A⇤ = {x 2 X : 9y 2 Zc
⇤, x � y},

as adding an x not satisfying this property is redundant. See Figure 4.2. In particu-
lar A⇤ is increasing: if x

1

2 A⇤ and x
2

� x
1

, then 9y 2 Zc⇤ such that x
1

� y and,
since x

2

� x
1

� y, the same y works for x
2

. Observe that, because y � y, the set
A⇤ also includes Zc⇤. If it were the case that A⇤ 6= Zc⇤, then we could construct a
cut with lower or equal capacity by fixing A⇤ and setting Z⇤ := Ac⇤: because A⇤ is
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Figure 4.2: Construction of a monotone coupling through the max-flow represen-
tation for independent Bernoulli pairs with parameters r (on the left) and q < r
(on the right). Edge labels indicate capacity. Edges without labels have infinite
capacity. The colored edges depict a suboptimal cut. The blue and orange vertices
correspond respectively to the sets A⇤ and Z⇤ for this cut. The capacity of the cut
is r2 + r(1� r) + (1� q)2 + (1� q)q = r + (1� q) > r + (1� r) = 1.
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increasing, any y 2 A⇤ \Z⇤ is such that paths of the form a ⇠ (x, 1) ⇠ (y, 2) ⇠ z
with x � y are cut by x 2 A⇤. Hence, for a minimum cut, we can assume that in
fact A⇤ = Zc⇤. The capacity of the cut is

µX(A⇤) + µY (Z⇤) = µX(A⇤) + 1� µY (A⇤) = 1 + (µX(A⇤)� µY (A⇤)) � 1,

where the term in parenthesis is nonnegative by assumption and the fact that A⇤ is
increasing. That concludes the proof.

Remark 4.12. Strassen’s theorem holds more generally on Polish spaces with a closed
partial order. See e.g. [Lin02, Section IV.1.2] for the details.

The proof of Corollary 4.6 immediately extends to:

Corollary 4.13. Let X and Y be X -valued random variables with X ⌫ Y and
let f : X ! R be an increasing function. Then f(X) ⌫ f(Y ) and furthermore,
provided E|f(X)|,E|f(Y )| < +1, we have that

E[f(X)] � E[f(Y )].

Ordering of Markov chains Stochastic domination also arises in the context of
Markov chains. We begin with an example.

Example 4.14 (Lazier chain). Consider a random walk (Xt) on the network N =
((V,E), c) where V = {0, 1, . . . , n} and i ⇠ j if and only |i � j|  1 (including
self-loops). Let N 0 = ((V,E), c0) be a modified version of N on the same graph
where for all i c(i, i)  c0(i, i). That is, if (X 0

t) is random walk on N 0, then (X 0
t) is

“lazier” than (Xt) in that it is more likely to stay put. Assume that both (Xt) and
(X 0

t) start at i
0

and define Ms := maxtsXt and M 0
s := maxtsX 0

t. Since (X 0
t)

“travels less” than (Xt) the following claim is intuitively obvious:

Claim 4.15.
Ms ⌫M 0

s.

We prove this by producing a monotone coupling. First set (X̂t) := (Xt). We then
generate (X̂ 0

t) as a “sticky” version of (X̂t). That is, (X̂ 0
t) follows exactly the same

transitions as (X̂t) (including the self-loops), but at each time it opts to stay where
it currently is, say j, for an extra time step with probability

c0(j, j)� c(j, j)
P

i⇠j c
0(i, j)

,
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which is in [0, 1] by assumption. Marginally, (X̂ 0
t) is a random walk on N 0 because

by construction

c0(j, j)
P

i⇠j c
0(i, j)

=
c0(j, j)� c(j, j)
P

i⇠j c
0(i, j)

+

 

P

i⇠j c(i, j)
P

i⇠j c
0(i, j)

!

c(j, j)
P

i⇠j c(i, j)
,

and for i 6= j with i ⇠ j

c0(i, j)
P

i⇠j c
0(i, j)

=

 

P

i⇠j c(i, j)
P

i⇠j c
0(i, j)

!

c(i, j)
P

i⇠j c(i, j)
,

since c0(i, j) = c(i, j). This coupling satisfies

cMs := max
ts

X̂t � max
ts

X̂ 0
t =: cM 0

s, a.s.

because (X̂ 0
t)ts visits a subset of the states visited by (X̂t)ts. In other words

(cMs, cM 0
s) is a monotone coupling of (Ms,M 0

s) and this proves the claim. J

The previous example involved an asynchronous coupling of the chains. Often,
a simpler step-by-step approach is possible.

Definition 4.16 (Stochastic domination for Markov kernels). Let P and Q be tran-
sition matrices on a finite or countable poset (X ,). The transition matrix Q is
said to stochastically dominate the transition matrix P if

stochastic
domination for
Markov chains

x  y =) P (x, ·) � Q(y, ·). (4.5)

If the above condition is satisfied for P = Q, we say that P is stochastically
monotone.

stochastic
monotonicityThe equivalent of Strassen’s theorem in this case is the following theorem,

which we prove in the finite case only again.

Theorem 4.17 (Strassen’s theorem for Markov kernels). Let (Xt) and (Yt) be
Markov chains on a finite poset (X ,) with transition matrices P and Q respec-
tively. Assume that Q stochastically dominates P . Then for all x

0

 y
0

there is a
coupling (X̂t, Ŷt) of (Xt) started at x

0

and (Yt) started at y
0

such that a.s.

X̂t  Ŷt, 8t.

Furthermore, if the chains are irreducible and have stationary distributions ⇡ and
µ respectively, then ⇡ � µ.
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Observe that, for a step-by-step monotone coupling to exist, it is not generally
enough for the weaker condition P (x, ·) � Q(x, ·) to hold for all x, as should
be clear from the proof. Also you should convince yourself that the chains in
Example 4.14 do not in general satisfy (4.5). (Which pairs x, y cause problems?)

Proof of Theorem 4.17. Let

W := {(x, y) 2 X ⇥ X : x  y}.

For all (x, y) 2 W , let R((x, y), ·) be the joint law of a monotone coupling of
P (x, ·) and Q(y, ·). Such a coupling exists by Strassen’s theorem and Condi-
tion (4.5). Let (X̂t, Ŷt) be a Markov chain on W with transition matrix R started
at (x

0

, y
0

). By construction, X̂t  Ŷt for all t a.s. That proves the first half of the
theorem.

For the second half, let A be increasing in X . Then, by the ergodic theorem for
Markov chains (e.g. [Dur10, Exercise 6.6.4]),

⇡(A) 1

t

X

st

ˆXs2A 
1

t

X

st

ˆYs2A ! µ(A), a.s.

where we used that X̂s 2 A implies Ŷs 2 A because X̂s  Ŷs and A is increasing.
This proves the claim by definition of stochastic domination.

An example of application of this theorem is given in the next subsection.

4.2.2 . Ising model on Zd: extremal measures

Consider the d-dimensional lattice Ld. Let ⇤ be a finite subset of vertices in Ld

and define X := {�1,+1}⇤, which is a poset when equipped with the relation
�  �0 if and only if �i  �0

i for all i 2 ⇤. For shorthand, we occasionally write +
and � instead of +1 and �1. For ⇠ 2 {�1,+1}Ld , recall that the (ferromagnetic)
Ising model on ⇤ with boundary conditions ⇠ and inverse temperature � is the

boundary
conditions,
inverse
temperature,
spins

probability distribution over spin configurations � 2 X given by

µ⇠
�,⇤(�) :=

1

Z
⇤,⇠(�)

e��H⇤,⇠(�),

where
H

⇤,⇠(�) := �
X

i⇠j
i,j2⇤

�i�j �
X

i⇠j
i2⇤,j /2⇤

�i⇠j ,

is the Hamiltonian and
Hamiltonian
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Z
⇤,⇠(�) :=

X

�2X
e��H⇤,⇠(�),

is the partition function. (Warning: it is easy to get confused with the � signs that
partition
function

cancel out in the exponent.) For the all-(+1) and all-(�1) boundary conditions
we write respectively µ+

�,⇤(�) and µ�
�,⇤(�). In this section, we show that these

two measures are extremal in the following sense. For all boundary conditions
⇠ 2 {�1,+1}Ld :

Claim 4.18.
µ+

�,⇤ ⌫ µ⇠
�,⇤ ⌫ µ�

�,⇤.

In words, because the ferromagnetic Ising model favors spin agreement, the all-
(+1) boundary condition tends to produce more +1s which in turn makes increas-
ing events more likely.

The idea of the proof is to use Theorem 4.17 with a suitable Markov chain.

Stochastic domination In this context, vertices are often referred to as sites.
site

Recall that the single-site Glauber dynamics of the Ising model is the Markov chain
on X which, at each time, selects a site i 2 ⇤ uniformly at random and updates the
spin �i according to µ⇠

�,⇤(�) conditioned on agreeing with � at all sites in ⇤\{i}.
Specifically, for � 2 {�1,+1}, i 2 ⇤, and � 2 X , let �i,� be the configuration �
with the state at i being set to �. Then, letting n = |⇤|, because the Ising measure
factorizes, the transition matrix of the Glauber dynamics is simply

Q⇠
�,⇤(�,�

i,�) :=
1

n
· e��S

⇠
i (�)

e��S⇠
i (�) + e�S

⇠
i (�)

,

where
S⇠
i (�) :=

X

j⇠i
j2⇤

�j +
X

j⇠i
j /2⇤

⇠j .

All other transitions have probability 0.
This chain is clearly irreducible. It is also reversible with respect to µ⇠

�,⇤.
Indeed, for all � 2 X and i 2 ⇤, letting

S⇠
6=i(�) := H

⇤,⇠(�
i,+) + S⇠

i (�) = H
⇤,⇠(�

i,�)� S⇠
i (�),
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we have

µ⇠
�,⇤(�

i,�)Q⇠
�,⇤(�

i,�,�i,+) =
e��S⇠

6=i(�)e��S⇠
i (�)

Z
⇤,⇠(�)

· e�S
⇠
i (�)

n[e��S⇠
i (�) + e�S

⇠
i (�)]

=
e��S⇠

6=i(�)

nZ
⇤,⇠(�)[e��S⇠

i (�) + e�S
⇠
i (�)]

=
e��S⇠

6=i(�)e�S
⇠
i (�)

Z
⇤,⇠(�)

· e��S⇠
i (�)

n[e��S⇠
i (�) + e�S

⇠
i (�)]

= µ⇠
�,⇤(�

i,+)Q⇠
�,⇤(�

i,+,�i,�).

In particular µ⇠
�,⇤ is the stationary distribution of Q⇠

�,⇤.

Claim 4.19.

⇠0 � ⇠ =) Q⇠0

�,⇤ stochastically dominates Q⇠
�,⇤. (4.6)

Proof. Because the Glauber dynamics updates a single site at a time, establishing
stochastic domination reduces to checking simple one-site inequalities:

Lemma 4.20. To establish (4.6), it suffices to show that, for all �  ⌧ ,

Q⇠
�,⇤(�,�

i,+)  Q⇠0

�,⇤(⌧, ⌧
i,+). (4.7)

Proof. Assume (4.7) holds. Let A be increasing in X and let �  ⌧ . Then, for the
single-site Glauber dynamics, we have

Q⇠
�,⇤(�, A) = Q⇠

�,⇤(�, A \B�), (4.8)

where
B� := {�i,� : i 2 ⇤, � 2 {�1,+1}},

and similarly for ⌧ , ⇠0. Moreover, because A is increasing and ⌧ � �,

�i,� 2 A =) ⌧ i,� 2 A, (4.9)

and
�i,� 2 A =) �i,+ 2 A. (4.10)

Letting

I±�,A := {i 2 ⇤ : �i,� 2 A}, I+�,A := {i 2 ⇤ : �i,+ 2 A},
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and similarly for ⌧ , we have by (4.7), (4.8), (4.9), and (4.10),

Q⇠
�,⇤(�, A) = Q⇠

�,⇤(�, A \B�)

=
X

i2I+�,A

Q⇠
�,⇤(�,�

i,+) +
X

i2I±�,A

h

Q⇠
�,⇤(�,�

i,�) +Q⇠
�,⇤(�,�

i,+)
i


X

i2I+�,A

Q⇠0

�,⇤(⌧, ⌧
i,+) +

X

i2I±�,A

1

n


X

i2I+⌧,A

Q⇠0

�,⇤(⌧, ⌧
i,+) +

X

i2I±⌧,A

h

Q⇠0

�,⇤(⌧, ⌧
i,�) +Q⇠0

�,⇤(⌧, ⌧
i,+)

i

= Q⇠0

�,⇤(⌧, A),

as claimed.

Returning to the proof of Claim 4.19, observe that

Q⇠
�,⇤(�,�

i,+) =
1

n
· e�S

⇠
i (�)

e��S⇠
i (�) + e�S

⇠
i (�)

=
1

n
· 1

e�2�S⇠
i (�) + 1

,

which is increasing in S⇠
i (�). Now �  ⌧ and ⇠  ⇠0 imply that S⇠

i (�)  S⇠0

i (⌧).
That proves the claim.

Finally:

Proof of Claim 4.18. Combining Theorem 4.17 and Claim 4.19 gives Claim 4.18.

Observe that we have not used any special property of the d-dimensional lattice.
Indeed Claim 4.18 in fact holds for any countable, locally finite graph with positive
coupling constants.

Thermodynamic limit To be written. See [RAS, Theorem 9.13].

4.2.3 . Random walk on trees: speed

To be written. See [LP, Proposition 13.3 and Exercise 13.1].†

†Requires: Section 2.2.4.
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4.2.4 FKG and Holley’s inequalities

A special case of stochastic domination is positive associations. In this section,
we restrict ourselves to posets of the form {0, 1}F for F finite. We begin with an
example.

Example 4.21 (Erdös-Rényi graphs: positive associations). Consider an Erdös-
Rényi graph G ⇠ Gn,p. Let E = {{x, y} : x, y 2 [n], x 6= y}. Think of G as
taking values in the poset ({0, 1}E ,) where a 1 indicates that the corresponding
edge is present. In fact observe that the law of G, which we denote as usual by Pn,p,
is a product measure on {0, 1}E . The event A that G is connected is increasing
because adding edges cannot disconnect a connected graph. So is the event B
of having a chromatic number larger than 4. Intuitively then, conditioning on A
makes B more likely. Indeed the occurence of A tends to be accompanied with
a larger number of edges which in turn makes B more probable. This is a more
general phenomenon. That is, for any non-empty increasing events A and B, we
have:

Claim 4.22.
Pn,p[B |A] � Pn,p[B]. (4.11)

Or, put differently, the conditional measure Pn,p[ · | A] stochastically dominates
the unconditional measure Pn,p[ · ]. This is a special case of what is known as
Harris’ inequality (proved below). Note that (4.11) is equivalent to Pn,p[A \ B] �
Pn,p[A]Pn,p[B], i.e., to the fact that A and B are positively correlated. J

More generally:

Definition 4.23 (Positive associations). Let µ be a probability measure on {0, 1}F
where F is finite. Then µ is said to have positive associations, or is positively

positive
associations

associated, if for all increasing functions f, g : {0, 1}F ! R

µ(fg) � µ(f)µ(g),

where
µ(h) :=

X

!2{0,1}F
µ(!)h(!).

In particular, for any increasing events A and B it holds that

µ(A \B) � µ(A)µ(B),

i.e., A and B are positively correlated.
positive
correlation
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Remark 4.24. Note that positive associations is concerned only with increasing events.
See Remark 4.40.

Remark 4.25. A notion of negative associations, which is a somewhat more delicate con-
cept, was defined in Remark 3.59. See also [Pem00].

Let µ be positively associated. Note that if A and B are decreasing, i.e. their
decreasing
event

complements are increasing, then

µ(A \B) = 1� µ(Ac [Bc)

= 1� µ(Ac)� µ(Bc) + µ(Ac \Bc)

� 1� µ(Ac)� µ(Bc) + µ(Ac)µ(Bc)

= µ(A)µ(B).

Similarly, if A is increasing and B is decreasing, we have µ(A\B)  µ(A)µ(B).
Harris’ inequality states that product measures on {0, 1}F have positive asso-

ciations. We prove a more general result known as the FKG inequality. For two
configurations !, !0 in {0, 1}F , we let ! ^ !0 and ! _ !0 be the coordinatewise
minimum and maximum of ! and !0.

Theorem 4.26 (FKG inequality). Let X = {0, 1}F where F is finite. Suppose µ is
a positive probability measure on X satisfying the FKG condition

FKG condition

µ(! _ !0)µ(! ^ !0) � µ(!)µ(!0), 8!,!0 2 X . (4.12)

This property is also known as log-convexity or log-supermodularity. We call such
a measure an FKG measure. Then µ has positive associations.

FKG measure

Remark 4.27. Strict positivity is not in fact needed [FKG71]. The FKG condition is
equivalent to a strong form of positive associations. See Exercise 4.4.

Note that product measures satisfy the FKG condition with equality. Indeed if
µ(!) is of the form

Q

f2F µf (!f ) then

µ(! _ !0)µ(! ^ !0) =
Y

f

µf (!f _ !0
f ) µf (!f ^ !0

f )

=
Y

f :!f=!0
f

µf (!f )
2

Y

f :!f 6=!0
f

µf (!f )µf (!
0
f )

=
Y

f :!f=!0
f

µf (!f )µf (!
0
f )

Y

f :!f 6=!0
f

µf (!f )µf (!
0
f )

= µ(!)µ(!0).
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So the FKG inequality applies, for instance, to bond percolation and Erdös-Rényi
graphs. The pointwise nature of the FKG condition also makes it relatively easy to
check for measures, such as that of the Ising model, which are defined explicitly
up to a normalizing constant.

Example 4.28 (Ising model on Zd: checking FKG). Consider again the setting
of Section 4.2.2. Of course we work on the space X := {�1,+1}⇤ rather than
{0, 1}F . Fix ⇤ ✓ Ld, ⇠ 2 {�1,+1}Ld and � > 0.

Claim 4.29. The measure µ⇠
�,⇤ satisfies the FKG condition and therefore has pos-

itive associations.

Intuitively, taking the maximum or minimum of two configurations tends to in-
crease spin agreement and therefore leads to a higher likelihood. By taking loga-
rithms in the FKG condition, one sees that proving the claim boils down to check-
ing an inequality for each term in the Hamiltonian. For �,�0 2 X , let ⌧ = � _ �0

and ⌧ = � ^ �0. When i 2 ⇤ and j /2 ⇤ such that i ⇠ j, we have

⌧ i⇠j + ⌧ i⇠j = (⌧ i + ⌧ i)⇠j = (�i + �0
i)⇠j = �i⇠j + �0

i⇠j . (4.13)

For i, j 2 ⇤ with i ⇠ j, note first that the case �j = �0
j reduces to the previous

calculation, so we assume �i 6= �0
i and �j 6= �0

j . Then

⌧ i⌧ j + ⌧ i⌧ j = (+1)(+1) + (�1)(�1) = 2 � �i�j + �0
i�

0
j ,

since 2 is the largest value the rightmost expression ever takes. We have shown that

H
⇤,⇠(⌧) +H

⇤,⇠(⌧)  H
⇤,⇠(�) +H

⇤,⇠(�
0),

which implies the claim.
Again, we have not used any special property of the lattice and the same result

holds for countable, locally finite graphs with positive coupling constants. Note
however that in the anti-ferromagnetic case, i.e., if we multiply the Hamiltonian by
�1, the above argument does not work. Indeed there is no reason to expect positive
associations in that case. J

The FKG inequality in turn follows from a more general result known as Hol-
ley’s inequality.

Theorem 4.30 (Holley’s inequality). Let X = {0, 1}F where F is finite. Suppose
µ
1

and µ
2

are positive probability measures on X satisfying

µ
2

(! _ !0)µ
1

(! ^ !0) � µ
2

(!)µ
1

(!0), 8!,!0 2 X . (4.14)

Then µ
1

� µ
2

.
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Before proving Holley’s inequality, we check that it indeed implies the FKG
inequality. See Exercise 4.1 for an elementary proof in the independent case, i.e.,
of Harris’ inequality.

Proof of Theorem 4.26. Assume that µ satisfies the FKG condition and let f , g be
increasing functions. Because of our restriction to positive measures in Holley’s
inequality, we will work with positive functions. This is done without loss of gen-
erality. Indeed, note that f and g are increasing if and only if f 0 := f�f(0)+1 > 0
and g0 := g � g(0) + 1 > 0 are increasing and that, moreover,

µ(f 0g0)� µ(f 0)µ(g0) = µ([f 0 � µ(f 0)][g0 � µ(g0)])
= µ([f � µ(f)][g � µ(g)])

= µ(fg)� µ(f)µ(g).

In Holley’s inequality, we let µ
1

:= µ and define the positive probability mea-
sure

µ
2

(!) :=
g(!)µ(!)

µ(g)
.

We check that µ
1

and µ
2

satisfy the conditions of Holley’s inequality. Note that
!0  !_!0 for any ! so that, because g is increasing, we have g(!0)  g(!_!0).
Hence, for any !, !0,

µ
1

(!)µ
2

(!0) = µ(!)
g(!0)µ(!0)

µ(g)

= µ(!)µ(!0)
g(!0)
µ(g)

 µ(! ^ !0)µ(! _ !0)
g(! _ !0)

µ(g)

= µ
1

(! ^ !0)µ
2

(! _ !0),

where on the third line we used the FKG condition satisfied by µ.
So Holley’s inequality implies that µ

2

⌫ µ
1

. Hence, since f is increasing, by
Corollary 4.13

µ(f) = µ
1

(f)  µ
2

(f) =
µ(fg)

µ(g)
,

and the theorem is proved.

Proof of Theorem 4.30. We use Theorem 4.17. This is similar to what was done
in Section 4.2.2. This time we couple Metropolis-like chains. For x 2 X and � 2
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{0, 1}, we let xi,� be x with coordinate i set to �. We write x ⇠ y if kx� yk
1

= 1.
Let n = |F |.

For ↵,� > 0 small enough, the following transition matrix over X is irre-
ducible and reversible w.r.t. its stationary distribution µ

2

: for all i 2 F , y 2 X ,

Q(yi,0, yi,1) =
↵

n
{�} ,

Q(yi,1, yi,0) =
↵

n

⇢

�
µ
2

(yi,0)

µ
2

(yi,1)

�

,

Q(y, y) = 1�
X

z⇠y

Q(y, z).

Let P be similarly defined for µ
1

with the same values of ↵ and �. For reasons that
will be clear below, the value of � is chosen so that the sum of the two expressions
in brackets above is smaller than 1 for all y, i. The value of ↵ is then chosen so
that P (x, x), Q(y, y) � 0 for all x, y. Reversibility follows immediately from the
first two equations. We call the first transition above an upward transition and the

upward/downward
transition

second one a downward transition.
By Theorem 4.17, it remains to show that Q stochastically dominates P . That

is, for any x  y, we want to show that P (x, ·) � Q(y, ·). We produce a monotone
coupling (X̂, Ŷ ) of these two distributions. Our goal is never to perform an upward
transition in x simultaneously with a downward transition in y. Observe that

µ
1

(xi,0)

µ
1

(xi,1)
� µ

2

(yi,0)

µ
2

(yi,1)
(4.15)

by taking ! = yi,0 and !0 = xi,1 in Condition (4.14).
The coupling works as follows. Fix x  y. With probability 1 � ↵, set

(X̂, Ŷ ) := (x, y). Otherwise, pick a coordinate i 2 F uniformly at random.
There are several cases to consider depending on the values of xi, yi (with xi  yi
by assumption):

- (xi, yi) = (0, 0): With probability �, perform an upward transition in both,
i.e., set X̂ := xi,1 and Ŷ := yi,1. With probability 1 � �, set (X̂, Ŷ ) :=
(x, y) instead.

- (xi, yi) = (1, 1): With probability � µ2(yi,0)
µ2(yi,1)

, perform a downward transition

in both, i.e., set X̂ := xi,0 and Ŷ := yi,0. With probability

�

✓

µ
1

(xi,0)

µ
1

(xi,1)
� µ

2

(yi,0)

µ
2

(yi,1)

◆

,
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perform a downward transition in x only, i.e., set X̂ := xi,0 and Ŷ := y.
Note that (4.15) guarantees that the previous step is well-defined. With the
remaining probability, set (X̂, Ŷ ) := (x, y) instead.

- (xi, yi) = (0, 1): With probability �, perform an upward transition in x

only, i.e., set X̂ := xi,1 and Ŷ := y. With probability � µ2(yi,0)
µ2(yi,1)

, perform

a downward transition in y only, i.e., set X̂ := x and Ŷ := yi,0. With the
remaining probability, set (X̂, Ŷ ) := (x, y) instead. (This is where we use
the odd choice of �.)

By construction, this coupling satisfies X̂  Ŷ a.s. An application of Theo-
rem 4.17 concludes the proof.

Example 4.31 (Ising model: extremality revisited). Holley’s inequality gives an-
other proof of Claim 4.18. To see this, just repeat the calculations of Example 4.28,
where now (4.13) is replaced with an inequality. See Exercise 4.2. J

4.2.5 . Erdös-Rényi graphs: Janson’s inequality, and application to the
containment problem

Let G = (V,E) ⇠ Gn,p be an Erdös-Rényi graph. Repeating the computations of
Section 2.2.2 (or see Claim 2.22), we see that the property of being triangle-free
has threshold n�1. That is, the probability that G contains a triangle goes to 0 or
1 as n ! +1 depending on whether p ⌧ n�1 or p � n�1 respectively. In this
section, we investigate what happens at the threshold. From now on, we assume
that p = �/n for some � > 0 not depending on n.

For any subset S of three distinct vertices of G, let BS be the event that S forms
a triangle in G. So

" := Pn,p[BS ] = p3 ! 0. (4.16)

Let Xn =
P

S2(V3) BS
be the number of triangles in G. By the linearity of

expectation, the expected number of triangles is

En,pXn =

✓

n

3

◆

p3 =
n(n� 1)(n� 2)

6

✓

�

n

◆

3

! �3

6
,

as n ! +1. If the events {BS}S were mutually independent, Xn would be
binomially-distributed and the event that G is triangle-free would have probability

Y

S2(V3)
Pn,p[B

c
S ] = (1� p3)(

n
3) ! e��3/6. (4.17)

137



In fact, by the Poisson approximation to the binomial (e.g. [Dur10, Theorem 3.6.1]),
we would have that the number of triangles converges weakly to Poi(�3/6).

In reality, of course, the events {BS} are not mutually independent. Observe
however that, for most pairs S, S0, the events BS and BS0 are in fact pairwise
independent. That is the case whenever |S \ S0|  1, i.e., whenever the edges
connecting S are disjoint from those connecting S0. Write S ⇠ S0 if S 6= S0 are
not independent, i.e. if |S \ S0| = 2. The expected number of (unordered) pairs
S ⇠ S0 both forming a triangle is

� :=
1

2

X

S,S0(V3)
S⇠S0

Pn,p[BS \BS0 ] =
1

2

✓

n

3

◆

(n� 3)p5 = ⇥(n4p5)! 0. (4.18)

Given that the events {BS} are “mostly” independent, it is natural to expect that
Xn behaves asymptotically as it does in the independent case. Indeed we prove:

Claim 4.32.
Pn,p[Xn = 0]! e��3/6.

Remark 4.33. In fact, X
n

d! Poi(�3/6). See Exercises 2.11 and 4.5.

The FKG inequality immediately gives one direction. Recall that Pn,p, as a
product measure over edge sets, satisfies the FKG condition and therefore has pos-
itive associations by the FKG inequality. Moreover the events Bc

S are decreasing
for all S. Hence

Pn,p

h

T

S2(V3)
Bc

S

i

�
Y

S2(V3)
Pn,p[B

c
S ]! e��3/6,

by (4.17). As it turns out, the FKG inequality also gives a bound in the other
direction. This is known as Janson’s inequality, which we state in a more general
context.

Janson’s inequality Let X := {0, 1}F where F is finite. Let Bi, i 2 I , be
a finite collection of events of the form Bi := {! 2 X : ! � �(i)} for some
�(i) 2 X . Think of these as “bad events” corresponding to a certain subset of
coordinates being set to 1. By definition, the Bis are increasing. Assume P is a
positive product measure on X . Write i ⇠ j if �(i)

r = �(j)
r = 1 for some r and

note that Bi is independent of Bj if i ⌧ j. Set

� :=
X

{i,j}
i⇠j

P[Bi \Bj ].
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Theorem 4.34 (Janson’s inequality). Let X , P, {Bi}i2I and � be as above. As-
sume further that there is " > 0 such that P[Bi]  " for all i 2 I . Then

Y

i2I
P[Bc

i ]  P[\i2IBc
i ]  e

�
1�"

Y

i2I
P[Bc

i ].

Before proving the theorem, we show that it implies Claim 4.32. We have
already shown in (4.16) and (4.18) that " ! 0 and � ! 0. Janson’s inequality
immediately implies the claim by (4.17).

Proof of Theorem 4.34. The lower bound follows from the FKG inequality.
In the other direction, the first step is somewhat clear. We apply the chain rule

to obtain

P[\i2IBc
i ] =

m
Y

i=1

P[Bc
i | \j2[i�1]

Bc
j ].

The rest is clever manipulation. W.l.o.g. assume I = [m]. For i 2 [m], let N(i) :=
{` 2 [m] : ` ⇠ i} and N<(i) := N(i) \ [i � 1]. Note that Bi is independent of
{B` : ` 2 [i� 1]\N<(i)}. Then

P[Bi | \j2[i�1]

Bc
j ] =

P
h

Bi \
⇣

\j2[i�1]

Bc
j

⌘i

P[\j2[i�1]

Bc
j ]

�
P
h

Bi \
⇣

\j2[i�1]

Bc
j

⌘i

P[\j2[i�1]\N<(i)B
c
j ]

= P
h

Bi \
�\j2N<(i)B

c
j

�

�

�

�

\j2[i�1]\N<(i) B
c
j

i

= P
h

Bi

�

�

�

\j2[i�1]\N<(i) B
c
j

i

⇥P
h

\j2N<(i)B
c
j

�

�

�

Bi \
�\j2[i�1]\N<(i)B

c
j

�

i

= P [Bi]

⇥P
h

\j2N<(i)B
c
j

�

�

�

Bi \
�\j2[i�1]\N<(i)B

c
j

�

i

,

By a union bound the second term on the last line is

P
h

\j2N<(i)B
c
j

�

�

�

Bi \
�\j2[i�1]\N<(i)B

c
j

�

i

� 1�
X

j2N<(i)

P
h

Bj

�

�

�

Bi \
�\j2[i�1]\N<(i)B

c
j

�

i

� 1�
X

j2N<(i)

P
h

Bj

�

�

�

Bi

i

,

139



where the last line follows from the FKG inequality applied to the product measure
P[ · |Bi] (on {0, 1}F 0 with F 0 := {` 2 [m] : �(i)

` = 0}). Combining the last three
displays and using 1 + z  ez , we get

P[\i2IBc
i ] 

m
Y

i=1

2

4P [Bc
i ] +

X

j2N<(i)

P [Bi \Bj ]

3

5


m
Y

i=1

P [Bc
i ]

2

41 +
1

1� "

X

j2N<(i)

P [Bi \Bj ]

3

5


m
Y

i=1

P [Bc
i ] exp

0

@

1

1� "

X

j2N<(i)

P [Bi \Bj ]

1

A .

By the definition of �, we are done.

4.2.6 . Percolation on Z2: RSW theory, and a proof of Harris’ theorem

Consider bond percolation on the two-dimensional lattice L2. Recall that the per-
colation function is given by

✓(p) := Pp[|C0| = +1],

where C
0

is the open cluster of the origin. We known from Example 4.10 that ✓(p)
is non-decreasing. Let

pc(L2) := sup{p � 0 : ✓(p) = 0},
be the critical value. We proved in Section 2.1.5 that there is a non-trivial transition,
i.e., pc(L2) 2 (0, 1). In fact we showed that pc(L2) 2 [1/3, 2/3] (see Exercise 2.2).

Our goal in this section is to use the FKG inequality to improve this further to:

Theorem 4.35 (Harris’ theorem).

✓(1/2) = 0.

Or, put differently, pc(L2) � 1/2.

Remark 4.36. This bound is tight, i.e., in fact p
c

(L2) = 1/2. The other direction, known
as Kesten’s theorem, is postponed to Section 8.3.4 where an additional ingredient is intro-
duced, Russo’s formula.

Several proofs of Harris’ theorem are known. A particularly elegant one is
sketched in Exercise 6.1. Here we present a proof that uses an important tool in
percolation theory, the RSW theorem, an application of the FKG inequality.
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Harris’ theorem To motivate the RSW theorem, we start with the proof of Har-
ris’ theorem.

Proof of Theorem 4.35. Fix p = 1/2. We use duality. Consider the L2 annulus

Ann(`) := [�3`, 3`]2\[�`, `].

The existence of a closed dual cycle inside Ann(`), which we denote by O
d

(`),
prevents the possibility of an infinite open self-avoiding path from the origin in the
primal lattice L2. See Figure 4.3. That is,

P
1/2[|C0| = +1] 

K
Y

k=0

{1� P
1/2[Od

(3k)]}, (4.19)

for all K, where we took powers of 3 to make the annuli disjoint and therefore
independent.

To prove the theorem, it suffices to show that there is a constant c⇤ > 0 such
that, for all `, P

1/2[Od

(`)] � c⇤. Then the r.h.s. of (4.19) tends to 0 as K ! +1.
To simplify further, thinking of Ann(`) as a union of four rectangles [�3`,�`) ⇥
[�3`, 3`], [�3`, 3`]⇥ (`, 3`], etc., it suffices to consider the event O#

d

(`) that each
one of these rectangles contains a closed dual self-avoiding path connecting its
two shorter sides. (More precisely, for the first rectangle above, the path connects
[�3`+1/2,�`�1/2]⇥{3`�1/2} to [�3`+1/2,�`�1/2]⇥{�3`+1/2} and
stays inside the rectangle, etc.) See Figure 4.3. By symmetry the probability that
such a path exists is the same for all four rectangles. Denote it by ⇢`. Moreover
the event that such a path exists is increasing so, although the four events are not
independent, we can apply the FKG inequality. Hence, because O#

d

(`) ✓ O
d

(`),
we finally get the bound

P
1/2[Od

(`)] � ⇢4` .

The RSW theorem and some symmetry arguments, both of which are detailed
below, imply that there is some c > 0 such that, for all `:

Claim 4.37.
⇢` � c.

That concludes the proof.

It remains to prove Claim 4.37. We first state the RSW theorem.
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Figure 4.3: Top: the event O
d

(`). Bottom: the event O#

d

(`).
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RSW theory We have reduced the proof of Harris’ theorem to bounding the
probability that certain closed paths exist in the dual lattice. To be consistent with
the standard RSW notation, we switch to the primal lattice and consider open paths.
We also let p take any value in (0, 1). As we did in Section 2.1.5, we accept without
proof some topological facts to be stated below.

Let Rn,↵(p) be the probability that the rectangle

B(↵n, n) := [�n, (2↵� 1)n]⇥ [�n, n],
has an open self-avoiding path connecting its left and right sides with the path
remaining inside the rectangle. Such a path is called an (open) left-right crossing.

left-right/
top-bottom
crossing

The event that a left-right crossing exists in a rectangle B is denoted by LR(B).
We similarly define the event, TB(B), that a top-bottom crossing exists in B. In
essence, the RSW theorem says this: if there is a significant probability that a
left-right crossing exists in B(n, n), then there is a significant probability that an
open self-avoiding cycle exists in Ann(n). More precisely, here is a version of the
theorem that will be enough for our purposes.

Theorem 4.38 (RSW theorem). For all n � 2 (divisible by 4) and p 2 (0, 1),

Rn,3(p) � 1

4
Rn,1(p)

11Rn/2,1(p)
12. (4.20)

Before presenting a proof, we finish the proof of Harris’ theorem by proving
Claim 4.37.

Proof of Claim 4.37. The point of (4.20) is that, if Rn,1(p) is bounded away from 0
uniformly in n, so is the l.h.s. By the argument in the proof of Harris’ theorem, this
then implies that an open self-avoiding cycle exists in Ann(n) with a probability
bounded away from 0 as well. Hence to prove Claim 4.37 it suffices to give a
lower bound on Rn,1(1/2). It is crucial that this bound not depend on the “scale,”
n. As it turns out, a simple duality-based symmetry argument does the trick. The
following fact about L2 is a variant of the contour lemma, Lemma 2.12. Its proof is
similar and Exercise 4.6 asks for the details (the “if” direction being the non-trivial
implication).

Lemma 4.39. There is an open left-right crossing in the primal rectangle [0, n +
1]⇥ [0, n] if and only if there is no closed top-bottom crossing in the dual rectangle
[1/2, n+ 1/2]⇥ [�1/2, n+ 1/2].

By symmetry, when p = 1/2, the two events in Lemma 4.39 have equal probability.
So they must have probability 1/2 because they form a partition of the space of
outcomes by the lemma. By monotonicity, that implies Rn,1(1/2) � 1/2 for all n.
The RSW theorem then implies the required bound.
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Figure 4.4: Illustration of the implication LR(B0
1

) \ TB(B0
1

\ B0
2

) \ LR(B0
2

) ✓
LR(B(3n, n)).

The proof of the RSW theorem involves a clever choice of event that relates
the existence of crossings in squares and rectangles.

Proof of Theorem 4.38. There are several steps in the proof.

Step 1: it suffices to bound Rn,3/2(p) We first reduce the proof to finding a
bound on Rn,3/2(p). Let B0

1

:= B(2n, n) and B0
2

:= [n, 5n] ⇥ [�n, n]. Note
that B0

1

[ B0
2

= B(3n, n) and B0
1

\ B0
2

= [n, 3n] ⇥ [�n, n]. Then we have the
implication

LR(B0
1

) \ TB(B0
1

\B0
2

) \ LR(B0
2

) ✓ LR(B(3n, n)).

See Figure 4.4. Each event on the l.h.s. is increasing so the FKG inequality gives

Rn,3(p) � Rn,2(p)
2Rn,1(p).

A similar argument over B(2n, n) gives

Rn,2(p) � Rn,3/2(p)
2Rn,1(p).

Combining the two, we have proved

Rn,3(p) � Rn,3/2(p)
4Rn,1(p)

3. (4.21)
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Step 2: bounding Rn,3/2(p) The heart of the proof is to bound Rn,3/2(p) using
an event involving crossings of squares. Let

B
1

:= B(n, n) = [�n, n]⇥ [�n, n],
B

2

:= [0, 2n]⇥ [�n, n],
B

12

:= B
1

\B
2

= [0, n]⇥ [�n, n],
S := [0, n]⇥ [0, n].

Let �
1

be the event that there are paths P
1

, P
2

, where P
1

is a top-bottom crossing
of S and P

2

is an open self-avoiding path connecting the left side of B
1

to P
1

and
stays inside B

1

. Similarly let �0
2

be the event that there are paths P 0
1

, P 0
2

, where P 0
1

is a top-bottom crossing of S and P 0
2

is an open self-avoiding path connecting the
right side of B

2

to P 0
1

and stays inside B
2

. Then we have the implication

�
1

\ LR(S) \ �0
2

✓ LR(B(3n/2, n)).

See Figure 4.5. By symmetry Pp[�1

] = Pp[�
0
2

]. Moreover, the events on the
l.h.s. are increasing so, by the FKG inequality,

Rn,3/2(p) � Pp[�1

]2Rn/2,1(p), (4.22)

and it remains to bound Pp[�1

]. That requires several additional definitions.

Step 3: bounding Pp[�1

] Let P
1

and P
2

be top-bottom crossings of S. There is a
natural partial order over such crossings. The path P

1

divides S into two subgraphs:
[P

1

} which includes the left side of S (including edges on the left incident with P
1

but not those edges on P
1

itself) and {P
1

] which includes the right side of S (and
P
1

itself). Then we write P
1

� P
2

if {P
1

] ✓ {P
2

]. Assuming TB(S) holds, one
also gets the existence of a unique rightmost crossing: take the union of all top-

rightmost
crossing

bottom crossings of S as sets of edges; then the “right boundary” of this set is a
top-bottom crossing P ⇤

S such that P ⇤
S � P for all top-bottom crossings P of S.

(We accept as a fact the existence of a unique rightmost crossing. See Exercise 4.6
for a related construction.)

Let IS be the set of self-avoiding (not necessarily open) paths connecting the
top and bottom of S and stay inside S. For P 2 IS , we let P 0 be the reflection of
P through the x-axis in B

12

\S and we let P
P 0 be the union of P and P 0. Define

[ PP 0 } to be the subgraph of B
1

to the left of P
P 0 (including edges on the left incident

with P
P 0 but not those edges on P

P 0 itself). Let LR+

�

[ PP 0 }
�

be the event that there
is a left-right crossing of [ PP 0 } ending on P , i.e., that there is an open self-avoiding
path connecting the left side of B

1

and P that stays within [ PP 0 }. See Figure 4.5.
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Figure 4.5: Top: illustration of the implication �
1

\ LR(S) \ �0
2

✓
LR(B(3n/2, n))1. Bottom: the event LR+

�

[ PP 0 }
� \ {P = P ⇤

S}; the dashed path
is the mirror image of the rightmost top-bottom crossing in S; the pink region is
the complement in B

1

of the set [ PP 0 }. Note that, because on the bottom figure
the left-right path must stay within [ PP 0 }, the configuration shown in the top fig-
ure where the purple left-right path “travels behind” the top-bottom crossing of S
cannot occur.
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Note that the existence of a left-right crossing of B
1

implies the existence of an
open self-avoiding path connecting the left side of B

1

to P
P 0 . By symmetry we then

get

Pp

⇥

LR+

�

[ PP 0 }
�⇤ � 1

2
Pp[LR(B1

)] =
1

2
Rn,1(p). (4.23)

Now comes a subtle point. We turn to the rightmost crossing of S—for two reasons.
First, by uniqueness, {P = P ⇤

S}P2IS forms a partition of TB(S). Second, the
rightmost crossing has a Markov-like property. Observe that, for P 2 IS , the event
that {P = P ⇤

S} depends only the bonds in {P ]. In particular it is independent of
the bonds in [ PP 0 }, e.g. of the event LR+

�

[ PP 0 }
�

. Hence

Pp

⇥

LR+

�

[ PP 0 }
� |P = P ⇤

S

⇤

= Pp

⇥

LR+

�

[ PP 0 }
�⇤

.

With (4.23), we get

Pp[�1

] �
X

P2IS
Pp[P = P ⇤

S ]Pp

⇥

LR+

�

[ PP 0 }
� |P = P ⇤

S

⇤

� 1

2
Rn,1(p)

X

P2IS
Pp[P = P ⇤

S ]

=
1

2
Rn,1(p)Pp[TB(S)]

=
1

2
Rn,1(p)Rn/2,1(p). (4.24)

Step 4: putting everything together Combining (4.21), (4.22) and (4.24) gives
that

Rn,3(p) � Rn,3/2(p)
4Rn,1(p)

3

� [Pp[�1

]2Rn/2,1(p)]
4Rn,1(p)

3

�
"

✓

1

2
Rn,1(p)Rn/2,1(p)

◆

2

Rn/2,1(p)

#

4

Rn,1(p)
3.

Rearranging concludes the proof of the RSW theorem.

Remark 4.40. This argument is quite subtle. In that respect, it is instructive to read the
remark after [Gri97, Theorem 9.3].

4.3 Couplings of Markov chains

As we have seen, coupling is useful to bound total variation distance. A natural
application is mixing.
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4.3.1 Bounding the mixing time via coupling

Let P be an irreducible, aperiodic Markov transition matrix on the finite state space
V with stationary distribution ⇡. Recall that, for a fixed 0 < " < 1/2, the mixing
time of P is

t
mix

(") := min{t : d(t)  "},
where

d(t) := max
x2V
kP t(x, ·)� ⇡k

TV

.

A coupling of Markov chains with transition matrix P is a Markov chain (Xt, Yt)
on V ⇥ V such that both (Xt) and (Yt) are Markov chains with transition matrix
P . For our purposes, the following special type of coupling will suffice.

Definition 4.41 (Markovian coupling). A Markovian coupling of P is a Markov
Markovian
coupling

chain (Xt, Yt)t on V ⇥ V with transition matrix Q satisfying:

- (Markovian coupling) For all x, y, x0, y0 2 V ,
X

z0

Q((x, y), (x0, z0)) = P (x, x0),

X

z0

Q((x, y), (z0, y0)) = P (y, y0).

We say that a Markovian coupling is coalescing if further:
coalescing

- (Coalescing) For all z 2 V ,

x0 6= y0 =) Q((z, z), (x0, y0)) = 0.

Let (Xt, Yt) be a coalescing, Markovian coupling of P . By the coalescing
condition, if Xs = Ys then Xt = Yt for all t � s. That is, once (Xt) and (Yt)
meet, they remain together. Let ⌧

coal

be the first meeting time, i.e.,
meeting time

⌧
coal

:= inf{t � 0 : Xt = Yt}.
The key to the coupling method is the following immediate consequence of the
coupling inequality, Lemma ??. For any starting point (x, y),

kP t(x, ·)� P t(y, ·)k
TV

 P
(x,y)[Xt 6= Yt] = P

(x,y)[⌧coal > t]. (4.25)

To relate this inequality to the mixing time, we define

d̄(t) := max
x,y2V

kP t(x, ·)� P t(y, ·)k
TV

.
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Lemma 4.42.
d(t)  d̄(t)  2d(t), 8t.

Proof. The second inequality follows from an application of the triangle inequality.
For the first inequality, note that by definition of the total variation distance

kP t(x, ·)� ⇡k
TV

= sup
A✓V

|P t(x,A)� ⇡(A)|

= sup
A✓V

�

�

�

�

�

�

X

y2V
⇡(y)[P t(x,A)� P t(y,A)]

�

�

�

�

�

�

 sup
A✓V

X

y2V
⇡(y)|P t(x,A)� P t(y,A)|


X

y2V
⇡(y)

(

sup
A✓V

|P t(x,A)� P t(y,A)|
)


X

y2V
⇡(y)kP t(x, ·)� P t(y, ·)k

TV

 max
x,y2V

kP t(x, ·)� P t(y, ·)k
TV

.

Combining (4.25) and Lemma 4.42, we get the main result of this section.

Theorem 4.43 (Bounding the mixing time: coupling method). Let (Xt, Yt) be a
coalescing, Markovian coupling of an irreducible transition matrix P on a finite
state space V with stationary distribution ⇡. Then

d(t)  max
x,y2V

P
(x,y)[⌧coal > t].

In particular

t
mix

(")  inf
�

t � 0 : P
(x,y)[⌧coal > t]  ", 8x, y .

We give a few simple examples in the next subsection.

4.3.2 . Markov chains: mixing on cycles, hypercubes, and trees

In this section, we consider lazy simple random walk on various graphs. By this we
lazy walk

mean that the walk stays put with probability 1/2 and otherwise picks an adjacent
vertex uniformly at random. In each case, we construct a coupling to bound the
mixing time.
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Cycle Let (Zt) be lazy simple random walk on the cycle of size n, Zn :=
{0, 1 . . . , n � 1}, where i ⇠ j if |j � i| = 1 (mod n). For any starting points
x, y, we construct a coalescing Markovian coupling (Xt, Yt) of this chain. Set
(X

0

, Y
0

) := (x, y). At each time, flip a fair coin. On heads, Yt stays put and Xt

moves one step, the direction of which is uniform at random. On tails, proceed
similarly with the roles of Xt and Yt reversed. Let Dt be the clockwise distance
between Xt and Yt. Observe that, by construction, (Dt) is simple random walk on
{0, . . . , n} and ⌧

coal

= ⌧D{0,n}, the first time (Dt) hits {0, n}.
We use Markov’s inequality, Theorem 2.4, to bound P

(x,y)[⌧
D
{0,n} > t]. Denote

by D
0

= dx,y the starting distance. By Wald’s second equation (e.g. [Dur10,
Example 4.1.6]),

E
(x,y)

h

⌧D{0,n}
i

= dx,y(n� dx,y).

Applying Theorem 4.43 and Markov’s inequality we get

d(t)  max
x,y2V

P
(x,y)[⌧coal > t]

 max
x,y2V

E
(x,y)

h

⌧D{0,n}
i

t

= max
x,y2V

dx,y(n� dx,y)

t

 n2

4t
,

or:

Claim 4.44.
t
mix

(")  n2

4"
.

By our diameter-based lower bound on mixing in Section 2.3.4, this bound
gives the correct order of magnitude in n up to logarithmic factors. Indeed, the
diameter is � = n/2 and ⇡

min

= 1/n so that Claim 2.48 gives

t
mix

(") � n2

64 log n
,

for n large enough. Exercise 4.8 sketches a tighter lower bound.

Hypercube Let (Zt) be lazy simple random walk on the n-dimensional hyper-
cube Zn

2

:= {0, 1}n where i ⇠ j if ki � jk
1

= 1. We denote the coordinates
of Zt by (Z(1)

t , . . . , Z(n
t ). The coupling (Xt, Yt) started at (x, y) is the following.
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At each time t, pick a coordinate i uniformly at random in [n], pick a bit value b
in {0, 1} uniformly at random independently of the coordinate choice. Set both i

coordinates to b, i.e., X(i)
t = Y (i)

t = b. Because of the way the updating is done,
the chains stay put with probability 1/2 at each time as required. Clearly the chains
meet when all coordinates have been updated at least once. The following standard
bound on the coupon collector problem is what is needed to conclude.

Lemma 4.45 (Coupon collecting). Let ⌧
coll

be the time it takes to update each
coordinate at least once. Then, for any c > 0,

P [⌧
coll

> dn log n+ cne]  e�c.

Proof. Let Bi be the event that the i-th coordinate has not been updated by time
dn log n+ cne. Then

P[⌧
coll

> dn log n+ cne] 
X

i

P[Bi]

=
X

i

✓

1� 1

n

◆dn logn+cne

 n exp

✓

�n log n+ cn

n

◆

= e�c.

Applying Theorem 4.43, we get

d(dn log n+ cne)  max
x,y2V

P
(x,y)[⌧coal > dn log n+ cne]

 P[⌧
coll

> dn log n+ cne]
 e�c.

Hence for c := c" > 0 large enough:

Claim 4.46.
t
mix

(")  dn log n+ c"ne.
Again we get a quick lower bound using our diameter-based result from Sec-

tion 2.3.4. Here � = n and ⇡
min

= 1/2n so that Claim 2.48 gives

t
mix

(") � n2

12 log n+ (4 log 2)n
= ⌦(n),

for n large enough. So the upper bound we derived above is off at most by a
logarithmic factor in n.
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Remark 4.47. In fact the upper bound is only off by a factor of 2 [LPW06, Proposition
7.13]. See also [LPW06, Theorem 18.3] for an improved upper bound and a discussion of
the so-called cutoff phenomenon. The latter refers to the fact that for this chain

lim
n

t
mix

(")

t
mix

(1� ")
= 1,

for all ", i.e., the total variation distance to stationarity drops from approximately 1 to
approximately 0 in a short time window.

b-ary tree Let (Zt) be lazy simple random walk on the `-level rooted b-ary tree,
bTb,`. The root, 0, is on level 0 and the leaves, L, are on level `. All vertices have
degree b + 1, except for the root which has degree b and the leaves which have
degree 1. Hence the stationary distribution is

⇡(x) :=
�(x)

2(n� 1)
,

where n is the number of vertices and �(x) is the degree of x. We construct a
coupling (Xt, Yt) of this chain started at (x, y). Assume w.l.o.g. that x is no further
from the root than y. The coupling has two stages:

- In the first stage, at each time, flip a fair coin. On heads, Yt stays put and Xt

moves one step chosen uniformly at random among its neighbors. Similarly,
on tails, reverse the roles of Xt and Yt and proceed in the same manner. Do
this until Xt and Yt are on the same level.

- In the second stage, i.e., once the two chains are on the same level, at each
time first let Xt move as a lazy random walk on bTb,`. Then let Yt move in
the same direction as Xt, i.e., if Xt moves closer to the root, so does Yt and
so on.

The key observation is the following. Let ⌧⇤ be the first time (Xt) visits the root
after visiting the leaves. Then ⌧

coal

 ⌧⇤ because, by construction, the two chains
have necessarily met by time ⌧⇤.

We use Markov’s inequality, Theorem 2.4, to estimate P
(x,y)[⌧

⇤ > t]. To bound
E
(x,y)[⌧

⇤] we note that it is less than the mean time for the walk to go from the root
to the leaves and back. Let Lt be the level of Xt and let N be the correspond-
ing network (where the conductances are equal to the number of edges on each
level of the tree). In terms of (Lt), the quantity we seek to bound is the mean of
⌧
0,`, the commute time of (Lt) between 0 and `. By the commute time identity,

Theorem 3.53,
E
0

[⌧
0,`] = cN R(0$ `), (4.26)
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where
cN = 2

X

e={x,y}2N
c(e) = 4(n� 1),

where we simply counted the number of edges in bTb,` and the factor of 4 accounts
for self-loops. Using network reduction techniques, we computed the effective
resistance R(0 $ `) in Examples 3.34 and 3.35—without self-loops. Of course
adding self-loops does not affect the effective resistance as we can use the same
voltage and current. So, ignoring them, we get

R(0$ `) =
`�1

X

j=0

r(j, j + 1) =
`�1

X

j=0

b�(j+1) =
1

b
· b

�` � 1

b�1 � 1
 1.

Finally, applying Theorem 4.43 and Markov’s inequality and using (4.26), we get

d(t)  max
x,y2V

P
(x,y)[⌧

⇤ > t]

 max
x,y2V

E
(x,y)[⌧

⇤]
t

 E
0

[⌧
0,`]

t

 4n

t
,

or:

Claim 4.48.
t
mix

(")  4n

"
.

This time the diameter-based bound is far off. We have � = 2` = ⇥(log n)
and ⇡

min

= 1/2(n� 1) so that Claim 2.48 gives

t
mix

(") � (2`)2

12 log n+ 4 log(2(n� 1))
= ⌦(log n),

for n large enough. Here is a better lower bound. Intuitively the mixing time
is significantly greater than the squared diameter because the chain tends to be
pushed away from the root: “going from one side of the root the other” typically
takes time linear in n. Formally let x

0

be a leaf of bTb,` and let A be the set of
vertices “on the other side of root (inclusively),” i.e., vertices whose graph distance
from x

0

is at least `. Then ⇡(A) � 1/2 by symmetry. We claim that, started at x
0

,
the walk typically takes time linear in n to reach A. See Figure 4.6. Consider again
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Figure 4.6: Setup for the lower bound on the mixing time on a b-ary tree. (Here
b = 2.)

the level Lt of Xt. Using the expression for the effective resistance above, we have

P`[⌧0 < ⌧+` ] =
1

c(`)R(0$ `)
=

1

2b`
· b� 1

1� b�`
=

b� 1

2b` � 2
= O

✓

1

n

◆

.

Hence, started from the leaves, the number of excursions back to the leaves needed
to reach the root for the first time is geometric with success probability O(n�1).
Each such excursion takes time at least 2. So P t(x

0

, A) is bounded above by
the probability that at least one such excursion was successful among the first t/2
attempts. That is,

P t(x
0

, A)  1� �

1�O
�

n�1

��t/2
<

1

2
� ",

for all t  ↵"n with ↵" > 0 small enough and

kP↵"n(x
0

, ·)� ⇡k
TV

� |P↵"n(x
0

, A)� ⇡(A)| > ".

We have proved that t
mix

(") � ↵"n.

4.3.3 Path coupling

Path coupling is a method for constructing Markovian couplings from “simpler”
couplings. The building blocks are one-step couplings starting from pairs of initial
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states that are close in some dissimilarity graph.
Let (Xt) be an irreducible Markov chain on a finite state space V with transi-

tion matrix P and stationary distribution ⇡. Assume that we are given a dissimi-
larity graph H

0

= (V
0

, E
0

) on V
0

:= V with edge weights w
0

: E
0

! R
+

. This
dissimilarity
graph, path
metric

graph need not have the same edges as the transition graph of (Xt). We extend w
0

to the path metric

w
0

(x, y) := inf

(

m�1

X

i=0

w
0

(xi, xi+1

) : x = x
0

, . . . , xm = y is a path in H
0

)

,

where the infimum is over all paths connecting x and y in H
0

. We call a path
achieving the infimum a minimum-weight path. Let

minimum-weight
path, weighted
diameter

�
0

:= max
x,y

w
0

(x, y),

be the weighted diameter of H
0

.

Theorem 4.49 (Path coupling method). Assume that

w
0

(u, v) � 1,

for all {u, v} 2 E
0

. Assume further that there exists  2 (0, 1) such that:

- (Local couplings) For all x, y with {x, y} 2 E
0

, there is a coupling (X⇤, Y ⇤)
of P (x, ·) and P (y, ·) satisfying the following contraction property

E[w
0

(X⇤, Y ⇤)]  w
0

(x, y). (4.27)

Then
d(t)  �

0

t,

or

t
mix

(") 
⇠

log�
0

+ log "�1

log �1

⇡

.

Proof. The crux of the proof is to extend (4.27) to arbitrary pairs of vertices.

Claim 4.50 (Global coupling). For all x, y 2 V , there is a coupling (X⇤, Y ⇤) of
P (x, ·) and P (y, ·) such that (4.27) holds.
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Iterating the coupling in this claim immediately implies the existence of a coa-
lescing Markovian coupling (Xt, Yt) of P such that

E
(x,y)[w0

(Xt, Yt)] = E
(x,y) [E[w0

(Xt, Yt) |Xt�1

, Yt�1

]]

 E
(x,y) [w0

(Xt�1

, Yt�1

)]

 · · ·
 t E

(x,y)[w0

(X
0

, Y
0

)]

= tw
0

(x, y)

 t�
0

.

By assumption, {x6=y}  w
0

(x, y) so that by the coupling inequality and Lemma
4.42, we have

d(t)  d̄(t)  max
x,y

P
(x,y)[Xt 6= Yt]  max

x,y
E
(x,y)[w0

(Xt, Yt)]  t�
0

,

which implies the theorem. It remains to prove Claim 4.50.

Proof of Claim 4.50. Fix x0, y0 2 V such that {x0, y0} is not an edge in the dissim-
ilarity graph H

0

. The idea is to combine the local couplings on a minimum-weight
path between x0 and y0 in H

0

. Let x0 = x
0

⇠ · · · ⇠ xm = y0 be such a path. For all
i = 0, . . . ,m�1, let (Z⇤

i,0, Z
⇤
i,1) be a coupling of P (xi, ·) and P (xi+1

, ·) satisfying
the contraction property (4.27). Set Z(0) := Z⇤

0,0 and Z(1) := Z⇤
0,1. Then itera-

tively pick Z(i+1) according to the law P[Z⇤
i,1 2 · |Z⇤

i,0 = Z(i)]. By induction on
i, (X⇤, Y ⇤) := (Z(0), Z(m)) is then a coupling of P (x0, ·) and P (y0, ·). Formally,
define the transition matrix

Ri(z
(i), z(i+1)) := P[Z⇤

i,1 = z(i+1) |Z⇤
i,0 = z(i)],

and observe that
X

z(i+1)

Ri(z
(i), z(i+1)) = 1, (4.28)

and
X

z(i)

P (xi, z
(i))Ri(z

(i), z(i+1)) = P (xi+1

, z(i+1)), (4.29)

by construction of the coupling (Z⇤
i,0, Z

⇤
i,1). See Figure 4.7. The law of the full

coupling (Z(0), . . . , Z(m)) is

P[(Z(0), . . . , Z(m)) = (z(0), . . . , z(m))]

= P (x
0

, z(0))R
0

(z(0), z(1)) · · ·Rm�1

(z(m�1), z(m)).
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Figure 4.7: Coupling of P (x0, ·) and P (y0, ·) constructed from a sequence of local
couplings (Z⇤

0,0, Z
⇤
0,1), . . . , (Z

⇤
0,m�1

, Z⇤
0,m�1

).

Using (4.28) and (4.29) inductively gives

P[X⇤ = z(0)] = P[Z(0) = z(0)] = P (x
0

, z(0)),

P[Y ⇤ = z(m)] = P[Z(m) = z(m)] = P (xm, z(m)),

as required.
By the triangle inequality for w

0

, the coupling (X⇤, Y ⇤) satisfies

E[w
0

(X⇤, Y ⇤)] = E
h

w
0

(X(0), X(m))
i


m�1

X

i=0

E
h

w
0

(X(i), X(i+1))
i


m�1

X

i=0

w
0

(xi, xi+1

)

= w
0

(x0, y0),

where, on the third line, we used (4.27) for adjacent pairs and the last line follows
from the fact that we chose a minimum-weight path.

That concludes the proof of the theorem.
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We illustrate the path coupling method in the next two subsections. See Exer-
cise 4.9 for an optimal transport perspective on the path coupling method.

4.3.4 . Ising model: Glauber dynamics at high temperature

Let G = (V,E) be a finite, connected graph with maximal degree �̄. Define
X := {�1,+1}V . Recall that the (ferromagnetic) Ising model on V with inverse
temperature � is the probability distribution over spin configurations � 2 X given
by

µ�(�) :=
1

Z(�)
e��H(�),

where
H(�) := �

X

i⇠j

�i�j ,

is the Hamiltonian and
HamiltonianZ(�) :=

X

�2X
e��H(�),

is the partition function. In this context, recall that vertices are often referred to as
partition
function

sites. The single-site Glauber dynamics of the Ising model is the Markov chain on

siteX which, at each time, selects a site i 2 V uniformly at random and updates the
spin �i according to µ�(�) conditioned on agreeing with � at all sites in V \{i}.
Specifically, for � 2 {�1,+1}, i 2 V , and � 2 X , let �i,� be the configuration �
with the state at i being set to �. Then, letting n = |V |, the transition matrix of the
Glauber dynamics is

Q�(�,�
i,�) :=

1

n
· e��Si(�)

e��Si(�) + e�Si(�)
=

1

n

⇢

1

2
+

1

2
tanh(��Si(�))

�

, (4.30)

where
Si(�) :=

X

j⇠i

�j .

All other transitions have probability 0. Recall that this chain is irreducible and
reversible with respect to µ� . In particular µ� is the stationary distribution of Q� .

In this section we give an upper bound on the mixing time, t
mix

("), of Q�

using path coupling. We first observe that:

Claim 4.51 (Glauber dynamics: lower bound on mixing).

t
mix

(") = ⌦(n log n), 8� > 0.
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Proof. Intuitively this is because, by a coupon collecting argument, it takes that
long to update each site at least once. More formally let �̄ be the all-(�1) configu-
ration and let A be the set of configurations where at least half of the sites are +1.
Then, by symmetry, µ�(A) = µ�(Ac) = 1/2 where we assumed for simplicity
that n is even. By definition of the total variation distance

d(t) � kQt
�(�̄, ·)� µ�(·)kTV

� |Qt
�(�̄, A)� µ�(A)| = |Qt

�(�̄, A)� 1/2|.
So it remains to show that by time c n log n, for c > 0 small, the chain is unlikely
to have reached A. That happens if, say, fewer than a third of the sites have been
updated. By the computations in Example 2.15, for t  c" (n/3) log(n/3) for
some c" > 0,

Qt
�(�̄, A)  1/2� ",

which proves the claim.

We say that the Glauber dynamics is fast mixing if t
mix

(") = O(n log n). In
fast mixing

our main result, we show that this is the case when the inverse temperature � is
small enough.

Claim 4.52 (Glauber dynamics: fast mixing at high temperature).

� < �̄�1 =) t
mix

(") = O(n log n).

Proof. We use path coupling. Let H
0

= (V
0

, E
0

) where V
0

:= X and {�,!} 2 E
0

if 1

2

k� � !k
1

= 1 with unit w
0

-weights on all edges. (To avoid confusion, we
reserve the notation ⇠ for adjacency in G.) Let {�,!} 2 E

0

differ at coordinate i.
We construct a coupling (X⇤, Y ⇤) of Q�(�, ·) and Q�(!, ·). We first pick the same
coordinate i⇤ to update. If i⇤ is such that all its neighbors in G have the same state
in � and !, i.e., if �j = !j for all j ⇠ i⇤, we update X⇤ from � according to the
Glauber rule and set Y ⇤ := X⇤. Note that this includes the case i⇤ = i. Otherwise,
i.e. if i⇤ ⇠ i, we proceed as follows. From the state �, the probability of updating
site i⇤ to state � 2 {�1,+1} is given by the expression in brackets in (4.30), and
similarly for !. Unlike the previous case, we cannot guarantee that the update is
identical in both chains. However, in order to minimize the chances of increasing
the distance between the two chains, we pick a uniform-[�1, 1] variable U and set

X⇤
i⇤ :=

(

+1, if U  tanh(�Si⇤(�))

�1, o.w.

and

Y ⇤
i⇤ :=

(

+1, if U  tanh(�Si⇤(!))

�1, o.w.
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We set X⇤
j := �j and Y ⇤

j := !j for all j 6= i⇤. The expected distance between X⇤

and Y ⇤ is then

E[w
0

(X⇤, Y ⇤)] = 1� 1

n
|{z}

(a)

+
1

n

X

j⇠i

1

2
|tanh(�Sj(�))� tanh(�Sj(!))|

| {z }

(b)

, (4.31)

where (a) corresponds to i⇤ = i in which case w
0

(X⇤, Y ⇤) = 0 and (b) corresponds
to i⇤ ⇠ i in which case w

0

(X⇤, Y ⇤) = 2 with probability 1

2

| tanh(�Si⇤(�)) �
tanh(�Si⇤(!))| by our coupling, and w

0

(X⇤, Y ⇤) = 1 otherwise. To bound (b),
we note that for j ⇠ i

|tanh(�Sj(�))� tanh(�Sj(!))| = tanh(�(s+ 2))� tanh(�s), (4.32)

where
s := Sj(�) ^ Sj(!).

The derivative of tanh is maximized at 0 where it is equal to 1. So the r.h.s. of (4.32)
is  2�. Plugging this back into (4.31), we get

E[w
0

(X⇤, Y ⇤)]  1� 1� �̄�

n
 exp

✓

�1� �̄�

n

◆

= w
0

(�,!),

where

 := exp

✓

�1� �̄�

n

◆

< 1,

by assumption. The diameter of H
0

is �
0

= n. By Theorem 4.49,

t
mix

(") 
⇠

log�
0

+ log "�1

log �1

⇡

=

⇠

n(log n+ log "�1)

1� �̄�

⇡

,

which implies the claim.

Remark 4.53. A slighlty more careful analysis shows that the condition �̄ tanh(�) < 1 is
enough for the claim to hold. See [LPW06, Theorem 15.1].

We will show in Section 6.2.6 that, at low temperatures, the Glauber dynam-
ics on bounded-degree graphs may be slow mixing, i.e., for certain families of
bounded-degree graphs t

mix

(") = ⌦(n↵) where ↵ > 1 depends on � and �̄.

4.3.5 . Colorings: from approximate sampling to approximate counting

To be written. See [MU05, Section 10.3] and [LPW06, Sections 14.3 and 14.4].
See also [JS97].
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4.4 Duality

To be written. See [AF, Section 14.3] and [Ald13, Lig].

4.4.1 Graphical representations and coupling of initial configurations

4.4.2 . Interacting particles: voter model on the complete graph and on
the line

Exercises

Exercise 4.1 (Harris’ inequality: alternative proof). We say that f : Rn ! R
is nondecreasing if it is nondecreasing in each variable while keeping the other
variables fixed.

• (Chebyshev’s association inequality) Let f : R ! R and g : R ! R be
nondecreasing and let X be a real random variable. Show that

E[f(X)g(X)] � E[f(X)]E[g(X)].

[Hint: Consider the quantity (f(X) � f(X 0))(g(X) � g(X 0)) where X 0 is
an independent copy of X .]

• (Harris’ inequality) Let f : Rn ! R and g : Rn ! R be nondecreasing
and let X = (X

1

, . . . , Xn) be independent real random variables. Show by
induction on n that

E[f(X)g(X)] � E[f(X)]E[g(X)].

Exercise 4.2. Provide the details for Example 4.31.

Exercise 4.3 (FKG: sufficient conditions). Let X := {0, 1}F where F is finite and
let µ be a positive probability measure on X . We use the notation introduced in the
proof of Holley’s inequality.

a) To check the FKG condition, show that it suffices to check that, for all x 
y 2 X and i 2 F ,

µ(yi,1)

µ(yi,0)
� µ(xi,1)

µ(xi,0)
.

[Hint: Write µ(! _ !0)/µ(!) as a telescoping product.]

b) To check the FKG condition, show that it suffices to check (4.12) only for
those !,!0 2 X such that k! � !0k

1

= 2 and neither !  !0 nor !0  !.
[Hint: Use a).]
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Exercise 4.4 (FKG and strong positive association). Let X := {0, 1}F where F is
finite and let µ be a positive probability measure on X . For ⇤ ✓ F and ⇠ 2 X , let

X ⇠
⇤

:= {!
⇤

⇥ ⇠
⇤

c : !
⇤

2 {0, 1}⇤},
where !

⇤

⇥ ⇠
⇤

c agrees with ! on coordinates in ⇤ and with ⇠ on coordinates in
F\⇤. Define the measure µ⇠

⇤

over {0, 1}⇤ as

µ⇠
⇤

(!
⇤

) :=
µ(!

⇤

⇥ ⇠
⇤

c)

µ(X ⇠
⇤

)
.

That is, µ⇠
⇤

is essentially µ conditioned on agreeing with ⇠ on F\⇤. The measure µ
is said to be strongly positively associated if µ⇠

⇤

(!
⇤

) is positively associated for all
strong positive
association

⇤ and ⇠. Prove that the FKG condition is equivalent to strong positive association.
[Hint: Use Exercise 4.3 as well as the FKG inequality.]

Exercise 4.5 (Triangle-freeness: a second proof). Consider again the setting of
Section 4.2.5.

a) Let et be the minimum number of edges in a t-vertex union of k not mutually
vertex-disjoint triangles. Show that, for any k � 2 and k  t < 3k, it holds
that et > t.

b) Use Exercise 2.11 to give a second proof of the fact that P[Xn = 0] !
e��3/6.

Exercise 4.6 (Primal and dual crossings). Modify the proof of Lemma 2.12 to prove
Lemma 4.39.

Exercise 4.7 (Square-root trick). Let µ be an FKG measure on {0, 1}F where F is
finite. Let A

1

and A
2

be increasing events with µ(A
1

) = µ(A
2

). Show that

µ(A
1

) � 1�
p

1� µ(A
1

[A
2

).

Exercise 4.8 (Mixing on cycles: lower bound). Let (Zt) be lazy, simple random
walk on the cycle of size n, Zn := {0, 1 . . . , n � 1}, where i ⇠ j if |j � i| = 1
(mod n).

a) Let A = {n/2, . . . , n�1}. By coupling (Zt) with lazy, simple random walk
on Z, show that

P↵n2
(n/4, A) <

1

2
� ",

for ↵ � ↵" > 0. [Hint: Use Kolmogorov’s maximal inequality (e.g. [Dur10,
Theorem 2.5.2]).]
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b) Deduce that
t
mix

(") � ↵"n
2.

Exercise 4.9 (Path coupling and optimal transport). Let V be a finite state space
and let P be an irreducible transition matrix on V with stationary distribution ⇡.
Let w

0

be a metric on V . For probability measures µ, ⌫ on V , let

W
0

(µ, ⌫) := inf {E[w
0

(X,Y )] : (X,Y ) is a coupling of µ and ⌫} ,
be the so-called transportation metric or Wasserstein distance between µ and ⌫.

Wasserstein
distancea) Show that W

0

is a metric. [Hint: Proof of Claim 4.50.]

b) Assume that the conditions of Theorem 4.49 hold. Show that for any proba-
bility measures µ, ⌫

W
0

(µP, ⌫P )  W
0

(µ, ⌫).

c) Use a) and b) to prove Theorem 4.49.

Notes
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non-rigourous work of Sykes and Essam [SE64]. The RSW theorem was obtained
independently to Russo [Rus78] and Seymour and Welsh [SW78]. The proof we
gave here is due to Bollobás and Riordan [BR06b]. Another short proof of a version
of the RSW theorem for critical site percolation on the triangular lattice was given
by Smirnov. See e.g. [Ste]. The type of “scale invariance” seen in the RSW theorem
plays a key role in the contemporary theory of critical two-dimensional percolation
and of two-dimensional lattice models more generally. See e.g. [Law05, Gri10a].
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