
Chapter 5

Branching processes

Branching processes arise naturally in the study of stochastic processes on trees and
locally tree-like graphs. After a review of the basic extinction theory of branching
processes, we give a few classical examples of applications in discrete probability.

5.1 Background

To be written. See [Dur06, Section 5.3.4] and [vdH14, Section 3.3].

5.1.1 . Random walk on Galton-Watson trees

To be written. See [LP, Theorem 3.5 and Corollary 5.10].⇤

5.2 Comparison to branching processes

We begin with an example whose connection to branching processes is clear: per-
colation on trees. Translating standard branching process results into their perco-
lation counterpart immediately gives a more detailed picture of the behavior of the
process than was derived in Section 2.2.3. We then tackle the phase transition of
Erdös-Rényi graphs using a comparison to branching processes.

5.2.1 . Percolation on trees: critical exponents

In this section, we use branching processes to study bond percolation on the infinite
b-ary tree bTb. The same techniques can be adapted to Td with d = b + 1 in a
straightforward manner.

⇤Requires: Section 2.2.3 and 3.1.1.
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We denote the root by 0. We think of the open cluster of the root, C
0

, as the
progeny of a branching process as follows. Denote by @n the n-th level of bTb,
that is, the vertices of bTb at graph distance n from the root. In the branching
process interpretation, we think of the immediate descendants in C

0

of a vertex v
as the “children” of v. By construction, v has at most b children, independently of
all other vertices in the same generation. In this branching process, the offspring
distribution is binomial with parameters b and p; Zn := |C

0

\ @n| represents the
size of the progeny at generation n; and W := |C

0

| is the total progeny of the
process. In particular |C

0

| < +1 if and only if the process goes extinct. Because
the mean number of offspring is bp, by Lemma ??, this leads immediately to a
(second) proof of:

Claim 5.1.
p
c

⇣

bTb

⌘

=
1

b
.

The generating function of the offspring distribution is �(s) := ((1�p)+ps)b.
So, by Lemma ?? again, the percolation function

✓(p) = Pp[|C0| = +1],

is 0 on [0, 1/b], while on (1/b, 1] the quantity ⌘(p) := (1 � ✓(p)) is the unique
solution in [0, 1) of the fixed point equation

s = ((1� p) + ps)b. (5.1)

For b = 2, for instance, we can compute the fixed point explicitly by noting that

0 = ((1� p) + ps)2 � s

= p2s2 + [2p(1� p)� 1]s+ (1� p)2,

whose solution for p 2 (1/2, 1] is

s⇤ =
�[2p(1� p)� 1]±p

[2p(1� p)� 1]2 � 4p2(1� p)2

2p2

=
�[2p(1� p)� 1]±p

1� 4p(1� p)

2p2

=
�[2p(1� p)� 1]± (2p� 1)

2p2

=
2p2 + [(1� 2p)± (2p� 1)]

2p2
.
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So, rejecting the fixed point 1,

✓(p) = 1� 2p2 + 2(1� 2p)

2p2
=

2p� 1

p2
.

We have proved:

Claim 5.2. For b = 2,

✓(p) =

(

0, 0  p  1

2

,
2(p� 1

2 )

p2
1

2

< p  1.

The expected size of the population at generation n is (bp)n so for p 2 [0, 1b )

E|C
0

| =
X

n�0

(bp)n =
1

1� bp
.

For p 2 (1b , 1), the total progeny is almost surely infinite, but it is of interest to
compute the expected cluster size conditioned on |C

0

| < +1. We use the duality
principle, Lemma ??. For 0  k  b, let

p̂k := [⌘(p)]k�1pk

= [⌘(p)]k�1

✓

b

k

◆

pk(1� p)b�k

=
[⌘(p)]k

((1� p) + p ⌘(p))b

✓

b

k

◆

pk(1� p)b�k

=

✓

b

k

◆✓

p ⌘(p)

(1� p) + p ⌘(p)

◆k ✓ 1� p

(1� p) + p ⌘(p)

◆b�k

=

✓

b

k

◆

p̂k (1� p̂)b�k

where we used (5.1) and implicitly defined the dual density

p̂ :=
p ⌘(p)

(1� p) + p ⌘(p)
. (5.2)

In particular {p̂k} is indeed a probability distribution. In fact it is binomial with
parameters b and p̂. The corresponding generating function is

�̂(s) := ((1� p̂) + p̂s)b = ⌘(p)�1�(s ⌘(p)),
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where the second expression can be seen directly from the definition of {p̂k}.
Moreover,

�̂0(s) = ⌘(p)�1�0(s ⌘(p)) ⌘(p) = �0(s ⌘(p)),

so �̂0(1�) = �0(⌘(p)) < 1 by the proof of Lemma ??, confirming that percolation
with density p̂ is subcritical. Summarizing:

Claim 5.3. Conditioned on |C
0

| < +1, (supercritical) percolation on bTb with
density p 2 (1b , 1) has the same distribution as (subcritical) percolation on bTb with
density defined by (5.2).

Therefore:

Claim 5.4.

�f(p) := Ep

⇥|C
0

| {|C0|<+1}
⇤

=

(

1

1�bp , p 2 [0, 1b ),
⌘(p)
1�bp̂ , p 2 (1b , 1).

For b = 2, ⌘(p) = 1� ✓(p) =
⇣

1�p
p

⌘

2

so

p̂ =
p
⇣

1�p
p

⌘

2

(1� p) + p
⇣

1�p
p

⌘

2

=
(1� p)2

p(1� p) + (1� p)2
= 1� p,

and

Claim 5.5. For b = 2,

�f(p) =

8

>

<

>

:

1/2
1
2�p

, p 2 [0, 1
2

),

1
2

⇣
1�p
p

⌘2

p� 1
2

, p 2 (1
2

, 1).

In fact, the random walk representation of the process, Lemma ??, gives an
explicit formula for the distribution |C

0

|. Namely, because |C
0

| d

= ⌧
0

for St =
P

`tX` � (t � 1) where S
0

= 1 and the X`s are i.i.d. binomial with parameters
b and p and further

P[⌧
0

= t] =
1

t
P[St = 0],

we have

Pp[|C0| = `] =
1

`
P

2

4

X

i`

X` = `� 1

3

5 =
1

`

✓

b`

`� 1

◆

p`�1(1� p)b`�(`�1), (5.3)
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where we used that a sum of independent binomials with the same p is still bino-
mial. In particular, at criticality, using Stirling’s formula it can be checked that

Ppc [|C0| = `] ⇠ 1

`

1
p

2⇡p
c

(1� p
c

)b`
=

1
p

2⇡(1� p
c

)`3
.

as ` ! +1.
Close to criticality, physicists predict that many quantities behave according

to power laws of the form |p � p
c

|� , where the exponent is referred to as a criti-
cal exponent. The critical exponents are believed to satisfy certain “universality”

critical exponent
properties. But even proving the existence of such exponents in general remains a
major open problem. On trees, though, we can simply read off the critical expo-
nents from the above formulas. For b = 2, Claims 5.2 and 5.5 imply for instance
that, as p ! p

c

,
✓(p) ⇠ 8(p� p

c

) {p>1/2},

and
�f(p) ⇠ 1

2
|p� p

c

|�1.

In fact, as can be seen from Claim 5.4, the critical exponent of �f(p) does not
depend on b. The same holds for ✓(p). See Exercise 5.5. Using (5.3), the higher
moments of |C

0

| can also be studied around criticality. See Exercise 5.6.

5.2.2 . Random binary search trees: height

To be written. See [Dev98, Section 2.1].

5.2.3 . Erdös-Rényi graphs: the phase transition

A compelling way to view Erdös-Rényi graphs as the density varies is the following
coupling or “evolution.” For each pair {i, j}, let U{i,j} be independent uniform
random variables in [0, 1] and set G(p) := ([n], E(p)) where {i, j} 2 E(p) if and
only if U{i,j}  p. Then G(p) is distributed according to Gn,p. As p varies from 0
to 1, we start with an empty graph and progressively add edges until the complete
graph is obtained.

We showed in Section 2.2.4 that logn
n is a threshold function for connectivity.

Before connectivity occurs in the evolution of the random graph, a quantity of
interest is the size of the largest connected component. As we show in this section,
this quantity itself undergoes a remarkable phase transition: when p = �

n with
� < 1, the largest component has size ⇥(log n); as � crosses 1, many components
quickly merge to form a so-called “giant component” of size ⇥(n).
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This celebrated result of Erdös and Rényi, which is often referred to as “the”
phase transition of the Erdös-Rényi graph, is related to the phase transition in per-
colation. That should be clear from the similarities between the proofs, specifically
the branching process approach to percolation on trees of Section 5.2.1.

Although the proof is quite long, it is well worth studying in details. It em-
ploys most tools we have seen up to this point: first and second moment methods,
Chernoff-Cramér bound, martingale techniques, coupling and stochastic domina-
tion, and branching processes. It is quintessential discrete probability.

For quick reference, we recall two results from previous chapters:

- (Binomial domination) We have

n � m =) Bin(n, p) ⌫ Bin(m, p). (5.4)

The binomial distribution is also dominated by the Poisson distribution in
the following way:

� 2 (0, 1) =) Poi(�) ⌫ Bin

✓

n� 1,
�

n

◆

. (5.5)

For the proofs, see Examples 4.4 and 4.8.

- (Poisson tail) Let Sn be a sum of n i.i.d. Poi(�) variables. Recall from (2.28)
and (2.29) that for a > �

� 1

n
logP[Sn � an] � a log

⇣a

�

⌘

� a+ � =: IPoi� (a), (5.6)

and similarly for a < �

� 1

n
logP[Sn  an] � IPoi� (a). (5.7)

To simplify the notation, we let

I� := IPoi� (1) = �� 1� log � � 0, (5.8)

where the inequality follows from the convexity of I� and the fact that it
attains its minimum at � = 1 where it is 0.

Exploration process For a vertex v 2 [n], let Cv be the connected component
containing v, also referred to as the cluster of v. To analyze the size of Cv, we

cluster
introduce a natural procedure to explore Cv and show that it is dominated above
and below by branching processes.

The exploration process started at v has 3 types of vertices:
active, explored,
and neutral
vertices
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- At: active vertices,

- Et: explored vertices,

- Nt: neutral vertices.

We start with A
0

:= {v}, E
0

:= ;, and N
0

contains all other vertices in Gn. At
time t, if At�1

= ; we let (At, Et,Nt) := (At�1

, Et�1

,Nt�1

). Otherwise, we pick
a random element, at, from At�1

and set:

- At := (At�1

\{at}) [ {x 2 Nt�1

: {x, at} 2 Gn}
- Et := Et�1

[ {at}
- Nt := Nt�1

\{x 2 Nt�1

: {x, at} 2 Gn}
We imagine revealing the edges of Gn as they are encountered in the exploration
process and we let (Ft) be the corresponding filtration. In words, starting with v,
the cluster of v is progressively grown by adding to it at each time a vertex adjacent
to one of the previously explored vertices and uncovering its neighbors in Gn. In
this process, Et is the set of previously explored vertices and At—the frontier of
the process—is the set of vertices who are known to belong to Cv but whose full
neighborhood is waiting to be uncovered. The rest of the vertices form the set Nt.
See Figure 5.1.

Let At := |At|, Et := |Et|, and Nt := |Nt|. Note that (Et) is non-decreasing
while (Nt) is non-increasing. Let

⌧
0

:= inf{t � 0 : At = 0}.

The process is fixed for all t > ⌧
0

. Notice that Et = t for all t  ⌧
0

, as exactly one
vertex is explored at each time until the set of active vertices is empty. Moreover,
for all t, (At, Et,Nt) forms a partition of [n] so

At + t+Nt = n, 8t  ⌧
0

. (5.9)

Hence, in tracking the size of the exploration process, we can work alternatively
with At or Nt. Specifically, the size of the cluster of v can be characterized as
follows.

Lemma 5.6.
⌧
0

= |Cv|.
Proof. Indeed a single vertex of Cv is explored at each time until all of Cv has been
visited. At that point, At is empty.
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Figure 5.1: Exploration process for Cv. The green edges are in Ft. The red ones
are not.

The processes (At) and (Nt) admit a simple recursive form. Conditioning on Ft�1

:

- (Active vertices) If At�1

= 0, the exploration process has finished its course
and At = 0. Otherwise, (a) one active vertex becomes an explored vertex
and (b) its neutral neighbors become active vertices. That is,

At = At�1

+ {At�1>0}
⇥ �1
|{z}

(a)

+ Zt
|{z}

(b)

⇤

, (5.10)

where Zt is binomial with parameters Nt�1

= n � (t � 1) � At�1

and pn.
For the coupling arguments below, it will be useful to think of Zt as a sum
of independent Bernoulli variables. That is, let (It,j : t � 1, j � 1) be an
array of independent, identically distributed {0, 1}-variables with P[I

11

=
1] = pn. We write

Zt =

Nt�1
X

i=1

It,i. (5.11)

- (Neutral vertices) Similarly, if At�1

> 0, i.e. Nt�1

< n� (t�1), Zt neutral
vertices become active vertices. That is,

Nt = Nt�1

� {Nt�1<n�(t�1)} Zt. (5.12)
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Branching process arguments With these observations, we now relate the clus-
ter size of v to the total progeny of a certain branching process. This is the key
lemma.

Lemma 5.7 (Cluster size: branching process approximation). Let Gn ⇠ Gn,pn

where pn = �
n with � > 0 and let Cv be the connected component of v 2 [n]. Let

W� be the total progeny of a branching process with offspring distribution Poi(�).
Then, for kn = o(

p
n),

P[W� � kn]�O

✓

k2n
n

◆

 Pn,pn [|Cv| � kn]  P[W� � kn].

Proof. We start with the upper bound.

Upper bound: Because Nt�1

= n� (t�1)�At�1

 n�1, conditioned on Ft�1

,
the following stochastic domination relations hold

Bin

✓

Nt�1

,
�

n

◆

� Bin

✓

n� 1,
�

n

◆

� Poi(�),

by (5.4) and (5.5). Observe that the r.h.s. does not depend on Nt�1

. Let (Z�
t ) be

a sequence of independent Poi(�). Using the coupling in Example 4.8, we can
couple the processes (It,j)j and (Z�

t ) in such way that Z�
t � Pn�1

j=1

It,j a.s. for all
t. Then by induction on t, for all t, 0  At  A�

t a.s. where we define

A�
t := A�

t�1

+ {A�
t�1>0}

⇥� 1 + Z�
t

⇤

, (5.13)

with A�
0

:= 1. (In fact, this is a domination of Markov transition matrices, as
defined in Definition 4.16.) In words, (At) is stochastically dominated by the ex-
ploration process of a branching process with offspring distribution Poi(�). As a
result, letting

⌧�
0

:= inf{t � 0 : A�
t = 0},

be the total progeny of the branching process, we immediately get

Pn,pn [|Cv| � kn] = Pn,pn [⌧0 � kn]  P[⌧�
0

� kn] = P[W� � kn].

Lower bound: In the other direction, we proceed in two steps. We first show that,
up to a certain time, the process is bounded from below by a branching process
with binomial offspring distribution. In a second step, we show that this binomial
branching process can be approximated by a Poisson branching process.

176



1. (Domination from below) Let A�
t be defined as

A�
t := A�

t�1

+ {A�
t�1>0}

⇥� 1 + Z�
t

⇤

, (5.14)

with A�
0

:= 1, where

Z�
t :=

n�kn
X

i=1

It,j . (5.15)

Note that (A�
t ) is the size of the active set in the exploration process of a

branching process with offspring distribution Bin(n� kn, pn). Let

⌧�
0

:= inf{t � 0 : A�
t = 0},

be the total progeny of this branching process. We claim that At is bounded
from below by A�

t up to time

�n�kn := inf{t � 0 : Nt  n� kn}.
Indeed, for all t  �n�kn , Nt�1

> n � kn. Hence, by (5.11) and (5.15),
Zt � Z�

t for all t  �n�kn and as a result, by induction on t,

At � A�
t , 8t  �n�kn .

Because the inequality between At and A�
t holds only up to time �n�kn , we

cannot compare directly ⌧
0

and ⌧�
0

. However, observe that the size of the
cluster of v is at least the total number of active and explored vertices at any
time t; in particular, when �n�kn < +1,

|Cv| � A�n�kn
+ E�n�kn

= n�N�n�kn
� kn.

On the other hand, when �n�kn = +1, Nt > n�kn for all t—in particular
for all t � ⌧

0

—and therefore |Cv| < kn. Moreover in that case, because
At � A�

t for all t, it holds in addition that ⌧�
0

 ⌧
0

< kn. To sum up, we
have proved the implications

⌧�
0

� kn =) �n�kn < +1 =) ⌧
0

� kn.

In particular,
P[⌧�

0

� kn]  Pn,pn [⌧0 � kn]. (5.16)

2. (Poisson approximation) By Lemma ??,

P[⌧�
0

= t] =
1

t
P
"

t
X

i=1

Z�
i = t� 1

#

, (5.17)
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where the Z�
i s are independent Bin(n � kn, pn). Note that

Pt
i=1

Z�
i ⇠

Bin(t(n � kn), pn). Recall the definition of (Z�
t ) from (5.13). By Lem-

mas ?? and ?? and the triangle inequality for total variation distance,
�

�

�

�

�

P
"

t
X

i=1

Z�
i = t� 1

#

� P
"

t
X

i=1

Z�
i = t� 1

#

�

�

�

�

�

 1

2
t(n� kn)(� log(1� pn))

2 + [t�� t(n� kn)(� log(1� pn))]

 1

2
tn

✓

�

n
+O(n�2)

◆

2

+



t�� t(n� kn)

✓

�

n
+O(n�2)

◆�

= O

✓

tkn
n

◆

.

So by (5.17)

P[⌧�
0

� kn] = 1� P[⌧�
0

< kn]

= 1� P[⌧�
0

< kn] +O

✓

k2n
n

◆

= P[⌧�
0

� kn] +O

✓

k2n
n

◆

.

Plugging this approximation back into (5.16) gives

Pn,pn [|Cv| � kn] = Pn,pn [⌧0 � kn]

� P[⌧�
0

� kn]�O

✓

k2n
n

◆

= P[W� � kn]�O

✓

k2n
n

◆

.

Remark 5.8. In fact one can get a slightly better lower bound. See Exercise 5.7.

When kn is large, the branching process approximation above is not as accurate
because of the saturation effect: an Erdös-Rényi graph has a finite pool of vertices
from which to draw edges; as the number of neutral vertices decreases, so does the
expected number of uncovered edges at each time. Instead we use the following
lemma.
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Lemma 5.9 (Cluster size: saturation). Let Gn ⇠ Gn,pn where pn = �
n with � > 0

and let Cv be the connected component of v 2 [n]. Let Yt ⇠ Bin(n � 1, 1 � (1 �
pn)t). Then, for any t,

Pn,pn [|Cv| = t]  P[Yt = t� 1].

Proof. We work with neutral vertices. By Lemma 5.6 and (5.9), for any t,

Pn,pn [|Cv| = t] = Pn,pn [⌧0 = t]  Pn,pn [Nt = n� t]. (5.18)

Recall that N
0

= n� 1 and

Nt = Nt�1

� {Nt�1<n�(t�1)}
Nt�1
X

i=1

It,i. (5.19)

It is easier to consider the process without the indicator as it has a simple distribu-
tion. Define N0

0

:= n� 1 and

N0

t := N0

t�1

�
N0

t�1
X

i=1

It,i, (5.20)

and observe that Nt � N0

t for all t, as the two processes agree up to time ⌧
0

at
which point Nt stays fixed. The interpretation of N0

t is straightforward: starting
with n�1 vertices, at each time each remaining vertex is discarded with probability
pn. Hence, the number of surviving vertices at time t has distribution

N0

t ⇠ Bin(n� 1, (1� pn)
t),

by the independence of the steps. Arguing as in (5.18),

Pn,pn [|Cv| = t]  Pn,pn [N
0

t = n� t]

= Pn,pn [(n� 1)�N0

t = t� 1]

= P[Yt = t� 1].

which concludes the proof.

Combining the previous lemmas we get:

Lemma 5.10 (Bound on the cluster size). Let Gn ⇠ Gn,pn where pn = �
n with

� > 0 and let Cv be the connected component of v 2 [n].
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- (Subcritical case) Assume � 2 (0, 1). For all  > 0,

Pn,pn

⇥|Cv| > (1 + )I�1

� log n
⇤

= O(n�(1+)).

- (Supercritical case) Assume � > 1. Let ⇣� be the unique solution in (0, 1) to
the fixed point equation

1� e��⇣ = ⇣.

Note that ⇣� is the survival probability of a branching process with offspring
distribution Poi(�). For any  > 0,

Pn,pn

⇥|Cv| > (1 + )I�1

� log n
⇤

= ⇣� +O

✓

log2 n

n

◆

.

Moreover, for any ↵ < ⇣� and any � > 0, there exists �,↵ > 0 large enough
so that

Pn,pn

⇥

(1 + �,↵)I
�1

� log n  |Cv|  ↵n
⇤

= O(n�(1+�)). (5.21)

Proof. In both cases we use Lemma 5.7. To apply the lemma we need to bound
the tail of the progeny W� of a Poisson branching process. Using the notation of
Lemma 5.7, by Lemma ??

P [W� > kn] = P [W� = +1] +
X

t>kn

1

t
P
"

t
X

i=1

Z�
i = t� 1

#

, (5.22)

where the Z�
i s are i.i.d. Poi(�). Both terms on the r.h.s. depend on whether or

not the mean � is smaller or larger than 1. We start with the first term. When
� < 1, the Poisson branching process goes extinct with probability 1. Hence
P[W� = +1] = 0. When � > 1 on the other hand, P[W� = +1] = ⇣�, where
⇣� > 0 is the survival probability of the branching process. As to the second term,
the sum of the Z�

i is �t. When � < 1, using (5.6),

X

t>kn

1

t
P
"

t
X

i=1

Z�
i = t� 1

#


X

t>kn

P
"

t
X

i=1

Z�
i � t� 1

#


X

t>kn

exp

✓

�tIPoi�

✓

t� 1

t

◆◆


X

t>kn

exp
��t(I� �O(t�1))

�


X

t>kn

C 0 exp (�tI�)

 C exp (�I�kn) , (5.23)
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for some constants C,C 0 > 0, where we assume that kn = !(1). When � > 1,

X

t>kn

1

t
P
"

t
X

i=1

Z�
i = t� 1

#


X

t>kn

P
"

t
X

i=1

Z�
i  t

#


X

t>kn

exp (�tI�)

 C exp (�I�kn) , (5.24)

for a possibly different C > 0.

Subcritical case: Assume 0 < � < 1 and let c = (1 + )I�1

� for  > 0. By
Lemma 5.7,

Pn,pn [|C1| > c log n]  P [W� > c log n] .

By (5.22) and (5.23),

P [W� > c log n] = O (exp (�I�c log n)) , (5.25)

which proves the claim.

Supercritical case: Now assume � > 1 and again let c = (1 + )I�1

� for  > 0.
By Lemma 5.7,

Pn,pn [|Cv| > c log n] = P [W� > c log n] +O

✓

log2 n

n

◆

, (5.26)

By (5.22) and (5.24),

P [W� > c log n] = ⇣� +O (exp (�cI� log n))

= ⇣� +O(n�(1+)). (5.27)

Combining (5.26) and (5.27), for any  > 0,

Pn,pn [|Cv| > c log n] = ⇣� +O

✓

log2 n

n

◆

. (5.28)

Next, we show that in the supercritical case when |Cv| > c log n the cluster size is
in fact linear in n with high probability. By Lemma 5.9

Pn,pn [|Cv| = t]  P[Yt = t� 1]  P[Yt  t],
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where Yt ⇠ Bin(n � 1, 1 � (1 � pn)t). Roughly, the r.h.s. is negligible until the
mean µt := (n � 1)(1 � (1 � �/n)t) is of the order of t. Let ⇣� be the unique
solution in (0, 1) to the fixed point equation

f(⇣) := 1� e��⇣ = ⇣.

The solution is unique because f(0) = 0, f(1) < 1, and the f is increasing, strictly
concave and has derivative � > 1 at 0. Note in particular that, when t = ⇣�n,
µt ⇡ t. Let ↵ < ⇣�. For any t 2 [c log n,↵n], by a Chernoff bound for Poisson
trials (Theorem 2.32),

P[Yt  t]  exp

 

�µt

2

✓

1� t

µt

◆

2

!

. (5.29)

For t/n  ↵ < ⇣�, using 1� x  e�x for x 2 (0, 1), there is �↵ > 1 such that

µt � (n� 1)(1� e��(t/n))

= t

✓

n� 1

n

◆

1� e��(t/n)

t/n

= t

✓

n� 1

n

◆

f(t/n)

t/n

� t

✓

n� 1

n

◆

1� e��↵

↵

� �↵t,

for n large enough, by the properties of f mentioned above. Plugging this back
into (5.29), we get

P[Yt  t]  exp

 

�t

(

�↵
2

✓

1� 1

�↵

◆

2

)!

.

Therefore
↵n
X

t=c logn

Pn,pn [|Cv| = t] 
↵n
X

t=c logn

P[Yt  t]


+1
X

t=c logn

exp

 

�t

(

�↵
2

✓

1� 1

�↵

◆

2

)!

= O

 

exp

 

�c log n

(

�↵
2

✓

1� 1

�↵

◆

2

)!!

.
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Taking  > 0 large enough proves (5.21).

Let C
max

be the largest connected component of Gn (choosing the component
containing the lowest label if there is more than one such component). Our goal is
to characterize the size of C

max

. Let

Xk :=
X

v2[n]
{|Cv |>k},

be the number of vertices in clusters of size at least k. There is a natural connection
between Xk and C

max

, namely,

|C
max

| > k () Xk > 0 () Xk > k.

A first moment argument on Xk and the previous lemma immediately imply an
upper bound on the size of C

max

in the subcritical case.

Theorem 5.11 (Subcritical case: upper bound on the largest cluster). Let Gn ⇠
Gn,pn where pn = �

n with � 2 (0, 1). For all  > 0,

Pn,pn

⇥|C
max

| > (1 + )I�1

� log n
⇤

= o(1).

Proof. Let c = (1+ )I�1

� for  > 0. We use the first moment method on Xk. By
symmetry and the first moment method (Corollary 2.5),

Pn,pn [|Cmax

| > c log n] = Pn,pn [Xc logn > 0]

 En,pn [Xc logn]

= nPn,pn [|C1| > c log n] . (5.30)

By Lemma 5.10,

Pn,pn [|Cmax

| > c log n] = O(n · n�(1+)) = O(n�) ! 0,

as n ! +1.

In fact we prove below that the largest component is of size roughly I�1

� log n. But
first we turn to the supercritical regime.
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Second moment arguments To characterize the size of the largest cluster in the
supercritical case, we need a second moment argument. Assume � > 1. For � > 0
and ↵ < ⇣�, let �,↵ be as defined in Lemma 5.10. Set

kn := (1 + �,↵)I
�1

� log n and k̄n := ↵n.

We call a vertex v such that |Cv|  kn a small vertex. Let
small vertex

Yk :=
X

v2[n]
{|Cv |k}.

Then Ykn is the number of small vertices. Observe that by definition Yk = n�Xk.
Hence by Lemma 5.10, the expectation of Ykn is

En,pn [Ykn ] = n(1� Pn,pn [|Cv| > kn]) = (1� ⇣�)n+O
�

log2 n
�

. (5.31)

Using Chebyshev’s inequality (Theorem 2.13), we prove that Ykn is close to its
expectation:

Lemma 5.12 (Concentration of Ykn). For any � 2 (1/2, 1) and � < 2� � 1,

Pn,pn [|Ykn � (1� ⇣�)n| � n� ]  O(n��).

Lemma 5.12, which is proved below, leads to our main result in the supercritical
case: the existence of a unique cluster of size linear in n which is referred to as the
giant component.

giant component

Theorem 5.13 (Supercritical regime: giant component). For any � 2 (1/2, 1) and
� < 2� � 1,

Pn,pn [||Cmax

|� ⇣�n| � n� ]  O(n��).

In fact, with probability 1 � o(1), there is a unique largest component and the
second largest cluster has size ⌦(log n).

Proof. Take ↵ 2 (⇣�/2, ⇣�) and let kn and k̄n be as above. Let B
1,n := {|Xkn

�
⇣�n| � n�}. Because � < 1, for n large enough, the event Bc

1,n implies that
Xkn

� 1 and, in particular, that

|C
max

|  Xkn
.

Let B
2,n := {9v, |Cv| 2 [kn, k̄n]}. If, in addition to Bc

1,n, Bc
2,n also holds then

|C
max

|  Xkn
= X

¯kn .
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There is equality in the last display if there is a unique cluster of size greater than
k̄n. This is indeed the case under Bc

1,n \Bc
2,n: if there were two distinct clusters of

size k̄n, then since 2↵ > ⇣� we would have for n large enough

Xkn
= X

¯kn > 2k̄n = 2↵n > ⇣�n+ n� ,

a contradiction. Hence we have proved that, under Bc
1,n \ Bc

2,n, we have

|C
max

| = Xkn
= X

¯kn .

Applying Lemmas 5.10 and 5.12 concludes the proof.

It remains to prove Lemma 5.12.

Proof of Lemma 5.12. The main task is to bound the variance of Ykn . Note that

En,pn [Y
2

k ] =
X

u,v2[n]
Pn,pn [|Cu|  k, |Cv|  k]

=
X

u,v2[n]

�

Pn,pn [|Cu|  k, |Cv|  k, u , v]

+Pn,pn [|Cu|  k, |Cv|  k, u < v]
 

, (5.32)

where u , v indicates that u and v are in the same connected component.
To bound the first term in (5.32), we note that u , v implies that Cu = Cv.

Hence,
X

u,v2[n]
Pn,pn [|Cu|  k, |Cv|  k, u , v] =

X

u,v2[n]
Pn,pn [|Cu|  k, v 2 Cu]

=
X

u,v2[n]
En,pn [ {|Cu|k} {v2Cu}]

=
X

u2[n]
En,pn [|Cu| {|Cu|k}]

= nEn,pn [|C1| {|C1|k}]
 nk. (5.33)

To bound the second term in (5.32), we sum over the size of Cu and note that,
conditioned on {|Cu| = `, u < v}, the size of Cv has the same distribution as the
unconditional size of C

1

in a Gn�`,pn random graph, that is,

Pn,pn [|Cv|  k | |Cu| = `, u < v] = Pn�`,pn [|C1|  k].
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Observe that this probability is increasing in `. Hence
X

u,v2[n]

X

`k

Pn,pn [|Cu| = `, |Cv|  k, u < v]

=
X

u,v2[n]

X

`k

Pn,pn [|Cu| = `, u < v]Pn,pn [|Cv|  k | |Cu| = `, u < v]


X

u,v2[n]

X

`k

Pn,pn [|Cu| = `]Pn�k,pn [|Cv|  k]

=
X

u,v2[n]
Pn,pn [|Cu|  k]Pn�k,pn [|Cv|  k].

To get a bound on the variance of Yk, we need to relate this last expression to
(En,pn [Yk])

2. For this purpose we define

�k := Pn�k,pn [|C1|  k]� Pn,pn [|C1|  k].

Then, plugging this back above, we get
X

u,v2[n]

X

`k

Pn,pn [|Cu| = `, |Cv|  k, u < v]


X

u,v2[n]
Pn,pn [|Cu|  k](Pn,pn [|Cv|  k] +�k)

 (En,pn [Yk])
2 + n2|�k|,

and it remains to bound �k. We use a coupling argument. Let H ⇠ Gn�k,pn

and construct H 0 ⇠ Gn,pn in the following manner: let H 0 coincide with H on
the first n � k vertices then pick the rest the edges independently. Then clearly
�k � 0 since the cluster of 1 in H 0 includes the cluster of 1 in H . In fact, �k is
the probability that under this coupling the cluster of 1 has at most k vertices in
H but not in H 0. That implies in particular that at least one of the vertices in the
cluster of 1 in H is connected to a vertex in {n� k+1, . . . , n}. Hence by a union
bound over those edges

�k  k2pn,

and
X

u,v2[n]
Pn,pn [|Cu|  k, |Cv|  k, u , v]  (En,pn [Yk])

2 + �k2n. (5.34)

Combining (5.33) and (5.34), we get

Var[Yk]  2�k2n.
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The result follows from Chebyshev’s inequality (Theorem 2.13) and (5.31).

A similar second moment argument also gives a lower bound on the size of the
largest component in the subcritical case. We proved in Theorem 5.11 that, when
� < 1, the probability of observing a connected component of size significantly
larger than I�1

� log n is vanishingly small. In the other direction, we get:

Theorem 5.14 (Subcritical regime: lower bound on the largest cluster). Let Gn ⇠
Gn,pn where pn = �

n with � 2 (0, 1). For all  2 (0, 1),

Pn,pn

⇥|C
max

|  (1� )I�1

� log n
⇤

= o(1).

Proof. Recall that
Xk :=

X

v2[n]
{|Cv |>k}.

It suffices to prove that with probability 1 � o(1) we have Xk > 0 when k =
(1 � )I�1

� log n. To apply the second moment method, we need an upper bound
on the second moment of Xk and a lower bound on its first moment. The following
lemma is closely related to Lemma 5.12. Exercise 5.8 asks for a proof.

Lemma 5.15 (Second moment of Xk). Assume � < 1. There is C > 0 such that

En,pn [X
2

k ]  (En,pn [Xk])
2 + Cnke�kI� , 8k � 0.

Lemma 5.16 (First moment of Xk). Let kn = (1 � )I�1

� log n. Then, for any
� 2 (0,) we have that

En,pn [Xkn ] = ⌦(n�),

for n large enough.

Proof. By Lemma 5.7,

En,pn [Xkn ] = nPn,pn [|C1| > kn]

= nP[W� > kn]�O
�

k2n
�

. (5.35)

Once again, we use the random-walk representation of the total progeny of a
branching process (Lemma ??). Using the notation of Lemma 5.7,

P[W� > kn] =
X

t>kn

1

t
P
"

t
X

i=1

Z�
i = t� 1

#

=
X

t>kn

1

t
e��t (�t)

t�1

(t� 1)!
.
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Using Stirling’s formula, we note that

e��t (�t)
t�1

t!
= e��t (�t)t

�t(t/e)t
p
2⇡t(1 + o(1))

=
1 + o(1)

�t
p
2⇡t

exp (�t�+ t log �+ t)

=
1 + o(1)

�
p
2⇡t3

exp (�tI�) .

For any " > 0, for n large enough,

P[W� > kn] � ��1

X

t>kn

exp (�t(I� + "))

= ⌦ (exp (�kn(I� + "))) .

For any � 2 (0,), plugging the last line back into (5.35) and taking " small
enough gives

En,pn [Xkn ] = ⌦ (n exp (�kn(I� + ")))

= ⌦
�

exp
�{1� (1� )I�1

� (I� + ")} log n��

= ⌦(n�).

We return to the proof of Theorem 5.11. Let kn = (1 � )I�1

� log n. By the
second moment method (Corollary 2.19) and Lemmas 5.15 and 5.16,

Pn,pn [Xkn > 0] � (EXkn)
2

E[X2

kn
]

�
✓

1 +
O(nkne�knI�)

⌦(n2�)

◆�1

=

✓

1 +
O(kne logn)

⌦(n2�)

◆�1

! 1,

for � close enough to . That proves the claim.

Critical regime via martingales To be written. See [NP10].
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5.3 Further applications

5.3.1 . Uniform random trees: local limit

To be written. See [Gri81].

Exercises

Exercise 5.1 (Galton-Watson process: geometric offspring). Let (Zt) be a Galton-
Watson branching process with geometric offspring distribution (started at 0), i.e.,
pk = p(1 � p)k for all k � 0, for some p 2 (0, 1). Let q := 1 � p, let m be the
mean of the offspring distribution, and let Mt = m�tZt.

a) Compute the probability generating function f of {pk}k�0

and the extinction
probability ⌘ := ⌘p as a function of p.

b) If G is a 2⇥ 2 matrix, define

G(s) :=
G

11

s+G
12

G
21

s+G
22

.

Show that G(H(s)) = (GH)(s).

c) Assume m 6= 1. Use b) to derive

ft(s) =
pmt(1� s) + qs� p

qmt(1� s) + qs� p
.

Deduce that when m > 1

E[exp(��M1)] = ⌘ + (1� ⌘)
(1� ⌘)

�+ (1� ⌘)
.

d) Assume m = 1. Show that

ft(s) =
t� (t� 1)s

t+ 1� ts
,

and deduce that
E[e��Zt/t |Zt > 0] ! 1

1 + �
.
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Exercise 5.2 (Supercritical branching process: infinite line of descent). Let (Zt)
be a supercritical Galton-Watson branching process with offspring distribution
{pk}k�0

. Let ⌘ be the extinction probability and define ⇣ := 1 � ⌘. Let Z1
t

be the number of individuals in the t-th generation with an infinite line of descent,
i.e., whose descendant subtree is infinite. Denote by S the event of nonextinction
of (Zt). Define p1

0

:= 0 and

p1k := ⇣�1

X

j�k

✓

j

k

◆

⌘j�k⇣kpj .

a) Show that {p1k }k�0

is a probability distribution and compute its expectation.

b) Show that for any k � 0

P[Z1
1

= k | S] = p1k .

[Hint: Condition on Z
1

.]

c) Show by induction on t that, conditioned on nonextinction, the process (Z1
t )

has the same distribution as a Galton-Watson branching process with off-
spring distribution {p1k }k�0

.

Exercise 5.3 (Hitting-time theorem: nearest-neighbor walk). Let X
1

, X
2

, . . . be
i.i.d. random variables taking value +1 with probability p and �1 with probability
q := 1� p. Let St :=

Pt
i=1

Xi with S
0

:= 0 and Mt := max{Si : 0  i  t}.

a) For r � 1, use the reflection principle to show that

P[Mt � r, St = b] =

(

P[St = b], b � r,

(q/p)r�bP[St = 2r � b], b < r.

b) Use a) to give a proof of the hitting-time theorem in this special case: letting
⌧b be the first time St hits b > 0, then show that for all t � 1

P[⌧b = t] =
b

t
P[St = b].

[Hint: Consider the probability P[Mt�1

= St�1

= b� 1, St = b].]

Exercise 5.4 (Percolation on bounded-degree graphs). Let G = (V,E) be a count-
able graph such that all vertices have degree bounded by b+ 1 for b � 2. Let 0 be
a distinguished vertex in G. For bond percolation on G, prove that

p
c

(G) � p
c

(bTb),

by bounding the expected size of the cluster of 0. [Hint: Consider self-avoiding
paths started at 0.]
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Exercise 5.5 (Percolation on bTb: critical exponent of ✓(p)). Consider bond per-
colation on the rooted infinite b-ary tree bTb with b > 2. For " 2 [0, 1 � 1

b ] and
u 2 [0, 1], define

h(", u) := u� ��

1� 1

b � "
�

(1� u) + 1

b + "
�b

.

a) Show that there is a constant C > 0 not depending on ", u such that
�

�

�

�

h(", u)� b"u+
b� 1

2b
u2
�

�

�

�

 C(u3 _ "u2).

b) Use a) to prove that

lim
p#pc(bTb)

✓(p)

(p� p
c

(bTb))
=

2b2

b� 1
.

Exercise 5.6 (Percolation on bT
2

: higher moments of |C
0

|). Consider bond per-
colation on the rooted infinite binary tree bT

2

. For density p < 1

2

, let Zp be an
integer-valued random variable with distribution

Pp[Zp = `] =
`Pp[|C0| = `]

Ep|C0| , 8` � 1.

a) Using the explicit formula for Pp[|C0| = `] derived in Section 5.2.1, show
that for all 0 < a < b < +1

Pp

"

Zp

(1/4)(1
2

� p)�2

2 [a, b]

#

! C

Z b

a
x�1/2e�xdx,

as p " 1

2

, for some constant C > 0.

b) Show that for all k � 2 there is Ck > 0 such that

lim
p"pc(bT2)

Ep|C0|k
(p

c

(bT
2

)� p)�1�2(k�1)

= Ck.

c) What happens when p # p
c

(bT
2

)?

Exercise 5.7 (Branching process approximation: improved bound). Let pn = �
n

with � > 0. Let Wn,pn , respectively W�, be the total progeny of a branching
process with offspring distribution Bin(n, pn), respectively Poi(�).
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a) Show that

|P[Wn,pn � k]� P[W� � k]|
 max{P[Wn,pn � k,W� < k],P[Wn,pn < k,W� � k]}.

b) Couple the two processes step-by-step and use a) to show that

|P[Wn,pn � k]� P[W� � k]|  �2

n

k�1

X

i=1

P[W� � i].

Exercise 5.8 (Subcritical Erdös-Rényi: Second moment). Prove Lemma 5.15.

Bibliographic remarks

Section 5.1 See [Dur10, Section 5.3.4] for a quick introduction to branching pro-
cesses. A more detailed overview relating to its use in discrete probability can
be found in [vdH14, Chapter 3]. The classical reference on branching processes
is [AN04]. The Kesten-Stigum theorem is due to Kesten and Stigum [KS66a,
KS66b, KS67]. Our proof of a weaker version with an L2 condition follows [Dur10,
Example 5.4.3]. Spitzer’s combinatorial lemma is due to Spitzer [Spi56]. The
proof presented here follows [Fel71, Section XII.6]. The hitting-time theorem
was first proved by Otter [Ott49]. Several proofs of a generalization can be found
in [Wen75]. The critical percolation threshold for percolation on Galton-Watson
trees is due to R. Lyons [Lyo90].

Section 5.2 The presentation in Section 5.2.1 follows [vdH10]. See also [Dur85].
For much more on the phase transition of Erdös-Rényi graphs, see e.g. [vdH14,

Chapter 4], [JLR11, Chapter 5] and [Bol01, Chapter 6]. In particular a central
limit theorem for the giant component, proved by several authors including Martin-
Löf [ML98], Pittel [Pit90], and Barraez, Boucheron, and de la Vega [BBFdlV00],
is established in [vdH14, Section 4.5].

Section 5.3
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