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Graphs

Definition (Undirected graph)

An undirected graph (or graph for short) is a pair G = (V ,E)
where V is the set of vertices (or nodes, sites) and

E ⊆ {{u, v} : u, v ∈ V},

is the set of edges (or bonds). The V is either finite or
countably infinite. Edges of the form {u} are called loops. We
do not allow E to be a multiset.
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An example: the Petersen graph
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Basic definitions

A vertex v ∈ V is incident with an edge e ∈ E if v ∈ e. The
incident vertices of an edge are sometimes called endvertices.
Two vertices u, v ∈ V are adjacent, denoted by u ∼ v , if
{u, v} ∈ E . The set of adjacent vertices of v , denoted by N(v),
is called the neighborhood of v and its size, i.e. δ(v) := |N(v)|,
is the degree of v . A vertex v with δ(v) = 0 is called isolated. A
graph is called d-regular if all its degrees are d . A countable
graph is locally finite if all its vertices have a finite degree.

Example
All vertices in the Petersen graph have degree 3, i.e., it is
3-regular. In particular there is no isolated vertex.
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Adjacency matrix

Let G = (V ,E) be a graph with n = |V |. The adjacency matrix
A of G is the n× n matrix defined as Axy = 1 if {x , y} ∈ E and 0
otherwise.

Example
The adjacency matrix of a triangle (i.e. 3 vertices with all
non-loop edges) is 0 1 1

1 0 1
1 1 0
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Paths, cycles, and spanning trees I

Definition (Subgraphs)

A subgraph of G = (V ,E) is a graph G′ = (V ′,E ′) with V ′ ⊆ V
and E ′ ⊆ E . The subgraph G′ is said to be induced if

E ′ = {{x , y} : x , y ∈ V ′, {x , y} ∈ E},

i.e., it contains all edges of G between the vertices of V ′. In that
case the notation G′ := G[V ′] is used. A subgraph is said to be
spanning if V ′ = V . A subgraph containing all non-loop edges
between its vertices is called a complete subgraph or clique.

Example
The Petersen graph contains no triangle, induced or not.
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An example: the Petersen graph
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Paths, cycles, and spanning trees II

A path in G (usually called a “walk” but that term has a different
meaning in probability) is a sequence of (not necessarily
distinct) vertices x0 ∼ x1 ∼ · · · ∼ xk . The number of edges, k , is
called the length of the path. If the endvertices x0, xk coincide,
i.e. x0 = xk , we call the path a cycle. If the vertices are all
distinct (except possibly for the endvertices), we say that the
path (or cycle) is self-avoiding. A self-avoiding path or cycle can
be seen as a (not necessarily induced) subgraph of G. We
write u ↔ v if there is a path between u and v . Clearly↔ is an
equivalence relation. The equivalence classes are called
connected components. The length of the shortest
self-avoiding path connecting two distinct vertices u, v is called
the graph distance between u and v , denoted by ρ(u, v).
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Paths, cycles, and spanning trees III

Definition (Connectivity)
A graph is connected if any two vertices are linked by a path,
i.e., if u ↔ v for all u, v ∈ V . Or put differently, if there is only
one connected component.

Example
The Petersen graph is connected.

A forest is a graph with no self-avoiding cycle. A tree is a
connected forest. Vertices of degree 1 are called leaves. A
spanning tree of G is a subgraph which is a tree and is also
spanning.
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An example: the Petersen graph
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Examples of finite graphs

Complete graph Kn

Cycle Cn

Rooted b-ary trees T̂`b
Hypercube {0,1}n
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Examples of infinite graphs

d-ary tree Td

Lattice Ld
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Transitive graphs

Definition (Graph automorphisms)

An automorphism of a graph G = (V ,E) is a bijection φ of V to
itself that preserves the edges, i.e., such that {x , y} ∈ E if and
only if {φ(x), φ(y)} ∈ E . A graph G = (V ,E) is vertex-transitive
if for any u, v ∈ V there is an automorphism mapping u to v .

Example
Any “rotation” of the Petersen graph is an automorphism.

Example

Td is vertex-transitive. T̂`b has many automorphisms but is not
vertex-transitive.
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Flows I

Definition (Flow)

Let G = (V ,E) be a connected graph with two distinguished,
distinct vertex sets, a source-set A ⊆ V and a sink-set Z . Let
c : E → R+ be a capacity function. A flow on the network (G, c)
from source A to sink Z is a function f : V × V → R such that:
F1 (Antisymmetry) f (x , y) = −f (y , x),∀x , y ∈ V .
F2 (Capacity constraint) |f (x , y)| ≤ c(e),∀e = {x , y} ∈ E , and

f (x , y) = 0 otherwise.
F3 (Flow-conservation constraint)∑

y :y∼x

f (x , y) = 0, ∀x ∈ V\(A ∪ Z ).
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Flows II

For U,W ⊆ V and F ⊆ E , let f (U,W ) :=
∑

u∈U,w∈W f (u,w)
and c(F ) :=

∑
e∈F c(e). The strength of f is |f | := f (A,Ac).

Definition (Cutset)
Let F ⊆ E . We call F a cutset separating A and Z if all paths
connecting A and Z include an edge in F . Let AF be the set of
vertices not separated from A by F , and similarly for ZF .

Lemma (Max flow ≤ min cut): For any cutset F , |f | ≤ c(F ).

Proof: f (A,Ac)
(F3)
= f (A,Ac) +

∑
u∈AF\A

f (u,V )
(F1)
= f (AF ,Ac

F )
(F2)
≤ c(F ).
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Flows III

Theorem (Max-Flow Min-Cut Theorem)

max{|f | : flow f} = min{c(F ) : cutset F}.

Proof: Let f be an optimal flow. (The sup is achieved by compactness.) An
augmentable path is a self-avoiding path x0 ∼ · · · ∼ xk with x0 ∈ A, xi /∈ A∪ Z
for all i 6= 0, k , and f (xi−1, xi) < c({xi−1, xi}) for all i . By optimality of f there
cannot be such a path with xk ∈ Z , otherwise we could push more flow
through it. Let B ⊆ V\(A ∪ Z ) be the set of all possible final vertices in an
augmentable path. Let F be the edge set between B and Bc . Note that
f (x , y) = c(e) for all e = {x , y} ∈ F with x ∈ B and y ∈ Bc , and that F is a
cutset. So we have equality in the previous lemma with B = AF .
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Directed graphs

Definition
A directed graph (or digraph for short) is a pair G = (V ,E)
where V is a set of vertices (or nodes, sites) and E ⊆ V 2 is a
set of directed edges.

A directed path is a sequence of vertices x0, . . . , xk with
(xi−1, xi) ∈ E for all i = 1, . . . , k . We write u → v if there is such
a path with x0 = u and xk = v . We say that u, v ∈ V
communicate, denoted by u ↔ v , if u → v and v → u. The↔
relation is clearly an equivalence relation. The equivalence
classes of↔ are called the (strongly) connected components
of G.
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Markov chains I

Definition (Stochastic matrix)
Let V be a finite or countable space. A stochastic matrix on V
is a nonnegative matrix P = (P(i , j))i,j∈V satisfying∑

j∈V

P(i , j) = 1, ∀i ∈ V .

Let µ be a probability measure on V . One way to construct a
Markov chain (Xt ) on V with transition matrix P and initial
distribution µ is the following. Let X0 ∼ µ and let (Y (i ,n))i∈V ,n≥1
be a mutually independent array with Y (i ,n) ∼ P(i , ·). Set
inductively Xn := Y (Xn−1,n), n ≥ 1.
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Markov chains II

So in particular:

P[X0 = x0, . . . ,Xt = xt ] = µ(x0)P(x0, x1) · · ·P(xt−1, xt ).

We use the notation Px ,Ex for the probability distribution and
expectation under the chain started at x . Similarly for Pµ,Eµ
where µ is a probability measure.

Example (Simple random walk)

Let G = (V ,E) be a finite or countable, locally finite graph.
Simple random walk on G is the Markov chain on V , started at
an arbitrary vertex, which at each time picks a uniformly chosen
neighbor of the current state.
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Markov chains III

The transition graph of a chain is the directed graph on V
whose edges are the transitions with nonzero probabilities.

Definition (Irreducibility)
A chain is irreducible if V is the unique connected component
of its transition graph, i.e., if all pairs of states communicate.

Example
Simple random walk on G is irreducible if and only if G is
connected.
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Markov property I

Let (Xt ) be a Markov chain with transition matrix P and initial
distribution µ. Let Ft = σ(X0, . . . ,Xt ). A fundamental property
of Markov chains known as the Markov property is that, given
the present, the future is independent of the past. In its
simplest form: P[Xt+1 = y | Ft ] = PXt [Xt+1 = y ] = P(Xt , y).
More generally, let f : V∞ → R be bounded, measurable and let
F (x) := Ex [f ((Xt )t≥0)], then (see [D, Thm 6.3.1]):

Theorem (Markov property)

E[f ((Xs+t )t≥0) | Fs] = F (Xs) a.s.

We will come back to the “strong” Markov property later.
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Markov property II

Let (Xt ) be a Markov chain with transition matrix P. We define
P t (x , y) := Px [Xt = y ].

Theorem (Chapman-Kolmogorov)

P t (x , z) =
∑

y∈V Ps(x , y)P t−s(y , z), s ∈ {0,1, . . . , t}.

Proof: Px [Xt = z | Fs] = F (Xs) with F (y) := Py [Xt−s = z] and
take Ex on each side.
If we write µs for the law of Xs as a row vector, then

µs = µ0Ps

where here Ps is the matrix product of P by itself s times.
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Aperiodicity

Definition (Aperiodicity)
A chain is said to be aperiodic if for all x ∈ V

gcd{t : P t (x , x) > 0} = 1.

Example (Lazy walk)
A lazy, simple random walk on G is a Markov chain such that,
at each time, it stays put with probability 1/2 or chooses a
uniformly random neighbor of the current state otherwise. Such
a walk is aperiodic.
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Stationary distribution I

Definition (Stationary distribution)

Let (Xt ) be a Markov chain with transition matrix P. A
stationary measure π is a measure such that∑

x∈V

π(x)P(x , y) = π(y), ∀y ∈ V ,

or in matrix form π = πP. We say that π is a stationary
distribution if in addition π is a probability measure.

Example

The measure π ≡ 1 is stationary for simple random walk on Ld .
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Stationary distribution II

Theorem (Existence and uniqueness: finite case)
If P is irreducible and has a finite state space, then it has a
unique stationary distribution.

Definition (Reversible chain)
A transition matrix P is reversible w.r.t. a measure η if
η(x)P(x , y) = η(y)P(y , x) for all x , y ∈ V . By summing over y ,
such a measure is necessarily stationary.

By induction, if (Xt ) is reversible w.r.t. a stationary distribution π

Pπ[X0 = x0, . . . ,Xt = xt ] = Pπ[X0 = xt , . . . ,Xt = x0].
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Stationary distribution III

Example

Let (Xt ) be simple random walk on a connected graph G. Then
(Xt ) is reversible w.r.t. η(v) := δ(v).

Example
The Metropolis algorithm modifies a given irreducible
symmetric chain Q to produce a new chain P with the same
transition graph and a prescribed positive stationary distribution
π. The definition is of the new chain is:

P(x , y) :=

{
Q(x , y)

[
π(y)
π(x) ∧ 1

]
, if x 6= y ,

1−
∑

z 6=x P(x , z), otherwise.
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Proof of Metropolis chain reversibility

Proof: Suppose x 6= y and π(x) ≥ π(y). Then, by the definition of P, we have

π(x)P(x , y) = π(x)Q(x , y)
π(y)
π(x)

= Q(x , y)π(y)

= Q(y , x)π(y) = P(y , x)π(y),

where we used the symmetry of Q. Moreover P(x , z) ≤ Q(x , z) so∑
z 6=x P(x , z) ≤ 1.
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Convergence

Theorem (Convergence to stationarity)

Suppose P is irreducible, aperiodic and has stationary
distribution π. Then, for all x , y, P t (x , y)→ π(y) as t → +∞.

For probability measures µ, ν on V , let their total variation
distance be ‖µ− ν‖TV := supA⊆V |µ(A)− ν(A)|.

Definition (Mixing time)
The mixing time is

tmix(ε) := min{t ≥ 0 : d(t) ≤ ε},

where d(t) := maxx∈V ‖P t (x , ·)− π(·)‖TV.
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Proofs of total variation distance properties I

Lemma: ‖µ− ν‖TV = 1
2
∑

x∈V |µ(x)− ν(x)|.
Proof: Let B := {x : µ(x) ≥ ν(x)}. Then, for any A ⊆ V ,

µ(A)− ν(A) ≤ µ(A ∩ B)− ν(A ∩ B) ≤ µ(B)− ν(B),

and similarly ν(A)− µ(A) ≤ ν(Bc)− µ(Bc). The two bounds are equal so
|µ(A)− ν(A)| ≤ µ(B)− ν(B), which is achieved at A = B. Also

µ(B)− ν(B) =
1
2
[
µ(B)− ν(B) + ν(Bc)− µ(Bc)

]
=

1
2

∑
x∈V

|µ(x)− ν(x)|.
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Proofs of total variation distance properties II

Lemma: d(t) is non-increasing in t .
Proof:

d(t + 1) = max
x∈V

sup
A⊆V
|P t+1(x ,A)− π(A)|

= max
x∈V

sup
A⊆V

∣∣∣∣∣∑
z

P(x , z)(P t(z,A)− π(A))

∣∣∣∣∣
≤ max

x∈V

∑
z

P(x , z) sup
A⊆V
|P t(z,A)− π(A)|

≤ max
z∈V

sup
A⊆V
|P t(z,A)− π(A)|
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A little linear algebra I

Assume V is finite and n := |V |.

Theorem
Any real eigenvalue λ of P satisfies |λ| ≤ 1.

Proof: Pf = λf =⇒ |λ|‖f‖∞ = ‖Pf‖∞ = maxx |
∑

y P(x , y)f (y)| ≤ ‖f‖∞
Assume further that P is reversible w.r.t. π. Define

〈f ,g〉π =
∑
x∈V

π(x)f (x)g(x), ‖f‖2π = 〈f , f 〉π.

Theorem
There is an orthonormal basis of (Rn, 〈·, ·〉π) of real right
eigenvectors {fj}nj=1 of P with real eigenvalues {λj}nj=1.
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A little linear algebra II

Proof: Let Dπ be the diagonal matrix with π on the diagonal. By reversibility,

M(x , y) :=

√
π(x)
π(y)

P(x , y) =

√
π(y)
π(x)

P(y , x) =: M(y , x).

So M = (M(x , y))x,y = D1/2
π PD−1/2

π , as a symmetric matrix, has real
eigenvectors {φj}n

j=1 forming an orthonormal basis of Rn with corresponding
eigenvalues {λj}n

j=1. Define fj := D−1/2
π φj . Then

Pfj = PD−1/2
π φj = D−1/2

π D1/2
π PD−1/2

π φj = D−1/2
π Mφj = λjD−1/2

π φj = λj fj ,

and

〈fi , fj〉π = 〈D−1/2
π φi ,D−1/2

π φj〉π =
∑

x

π(x)[π(x)−1/2φi(x)][π(x)−1/2φj(x)] = 〈φi , φj〉.
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Random walk on a graph

Definition
Let G = (V ,E) be a finite or countable, locally finite graph.
Simple random walk on G is the Markov chain on V , started at
an arbitrary vertex, which at each time picks a uniformly chosen
neighbor of the current state.

Questions:
How often does the walk return to its starting point?
How long does it take to visit all vertices once or a
particular subset of vertices for the first time?
How fast does it approach stationarity?
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Random walk on a network

Definition
Let G = (V ,E) be a finite or countable, locally finite graph. Let
c : E → R+ be a positive edge weight function on G. We call
N = (G, c) a network. Random walk on N is the Markov chain
on V , started at an arbitrary vertex, which at each time picks a
neighbor of the current state proportionally to the weight of the
corresponding edge.

Any countable, reversible Markov chain can be seen as a
random walk on a network (not necessarily locally finite) by
setting c(e) := π(x)P(x , y) = π(y)P(y , x) for all e = {x , y} ∈ E .
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Bond percolation I

Definition
Let G = (V ,E) be a finite or countable, locally finite graph. The
bond percolation process on G with density p ∈ [0,1], whose
measure is denoted by Pp, is defined as follows: each edge of
G is independently set to open with probability p, otherwise it is
set to closed. Write x ⇔ y if x , y ∈ V are connected by a path
all of whose edges are open. The open cluster of x is

Cx := {y ∈ V : x ⇔ y}.
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Bond percolation II

We will mostly consider bond percolation on Ld or Td .

Questions:
For which values of p is there an infinite open cluster?
How many infinite clusters are there?
What is the probability that y is in the open cluster of x?
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Random graphs: Erdös-Rényi

Definition
Let V = [n] and p ∈ [0,1]. The Erdös-Rényi graph G = (V ,E)
on n vertices with density p is defined as follows: for each pair
x 6= y in V , the edge {x , y} is in E with probability p
independently of all other edges. We write G ∼ Gn,p and we
denote the corresponding measure by Pn,p.

Questions:
What is the probability of observing a triangle?
Is G connected? If not, how large are the components?
What is the typical chromatic number (i.e., the smallest
number of colors needed to color the vertices so that no
two adjacent vertices share the same color)?
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Random graphs: preferential attachment

Definition
The preferential attachment process produces a sequence of
graphs (Gt )t≥1 as follows. We start at time 1 with two vertices,
denoted v0 and v1, connected by an edge. At time t , we add
vertex vt with a single edge connecting it to an old vertex, which
is picked proportionally to its degree. We write (Gt )t≥1 ∼ PA1.

Questions:
How are the degrees distributed?
What is the typical distance between two vertices?
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Gibbs random fields I

Definition
Let S be a finite set and let G = (V ,E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure µ on X := SV is called a Gibbs random field if there
exist clique potentials φK : SK → R, K ∈ K, such that

µ(x) =
1
Z

exp

(∑
K∈K

φK (xK )

)
,

where xK is x restricted to the vertices of K and Z is a
normalizing constant.
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Gibbs random fields II

Example
For β > 0, the ferromagnetic Ising model with inverse
temperature β is the Gibbs random field with S := {−1,+1},
φ{i,j}(σ{i,j}) = βσiσj and φK ≡ 0 if |K | 6= 2. The function
H(σ) := −

∑
{i,j}∈E σiσj is known as the Hamiltonian. The

normalizing constant Z := Z(β) is called the partition function.
The states (σi)i∈V are referred to as spins.

Questions:
How fast is correlation decaying?
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Interacting particles: Glauber dynamics I

Definition
Let µβ be the Ising model with inverse temperature β > 0 on a
graph G = (V ,E). The (single-site) Glauber dynamics is the
Markov chain on X := {−1,+1}V which at each time:

selects a site i ∈ V uniformly at random, and
updates the spin at i according to µβ conditioned on
agreeing with the current state at all sites in V\{i}.

Sébastien Roch, UW–Madison Modern Discrete Probability – Review and Models
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Interacting particles: Glauber dynamics II

Specifically, for γ ∈ {−1,+1}, i ∈ Λ, and σ ∈ X , let σi,γ be the
configuration σ with the spin at i being set to γ. Let n = |V | and
Si(σ) :=

∑
j∼i σj . Because the Ising measure factorizes, the

nonzero entries of the transition matrix are

Qβ(σ, σi,γ) :=
1
n
· eγβSi (σ)

e−βSi (σ) + eβSi (σ)
.

Theorem
The Glauber dynamics is reversible w.r.t. µβ.

Question: How quickly does the chain approach µβ?

Sébastien Roch, UW–Madison Modern Discrete Probability – Review and Models
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Interacting particles: Glauber dynamics III

Proof of the theorem: This chain is clearly irreducible. For all σ ∈ X and
i ∈ V , let S 6=i(σ) := H(σi,+) + Si(σ) = H(σi,−)− Si(σ). We have

µβ(σ
i,−)Qβ(σ

i,−, σi,+) =
e−βS6=i (σ)e−βSi (σ)

Z(β) · eβSi (σ)

n[e−βSi (σ) + eβSi (σ)]

=
e−βS6=i (σ)

nZ(β)[e−βSi (σ) + eβSi (σ)]

=
e−βS6=i (σ)eβSi (σ)

Z(β) · e−βSi (σ)

n[e−βSi (σ) + eβSi (σ)]

= µβ(σ
i,+)Qβ(σ

i,+, σi,−).

Sébastien Roch, UW–Madison Modern Discrete Probability – Review and Models



Preliminaries
Some fundamental models

Random walks on graphs
Percolation
Some random graph models
Markov random fields
Interacting particles on finite graphs

Interacting particles: voter model

Definition
Let S := {0,1} and let G = (V ,E) be a finite, connected graph.
The voter model on G is the Markov chain (ηt ) on SV which, at
each time t , picks a uniform site i ∈ V as well as a uniform
neighbor j ∼ i and sets ηt (i) := ηt−1(j).

Questions:
How long does it take to reach one of the two absorbing
states, i.e., the all-0 and all-1 configurations?

Sébastien Roch, UW–Madison Modern Discrete Probability – Review and Models
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