Modern Discrete Probability

I - Introduction Review and Some Fundamental Models

> Sebastien Roch ´ *UW–Madison Mathematics*

September 25, 2014

Sébastien Roch, UW–Madison **[Modern Discrete Probability – Review and Models](#page-45-0)**

イロト イ押 トイヨ トイヨト

B

[Preliminaries](#page-1-0)

- [Review of graph theory](#page-2-0)
- [Review of Markov chain theory](#page-18-0)

[Some fundamental models](#page-33-0)

- [Random walks on graphs](#page-34-0)
- **•** [Percolation](#page-36-0)
- [Some random graph models](#page-38-0)
- **[Markov random fields](#page-40-0)**
- **•** [Interacting particles on finite graphs](#page-42-0)

4 0 8 4 间 Ω

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Definition (Undirected graph)

An *undirected graph* (or graph for short) is a pair $G = (V, E)$ where *V* is the set of *vertices* (or nodes, sites) and

$$
E\subseteq \{\{u,v\} \,:\, u,v\in V\},\
$$

is the set of *edges* (or bonds). The *V* is either finite or countably infinite. Edges of the form {*u*} are called *loops*. We do *not* allow *E* to be a multiset.

E

∢ ロ ▶ ∢ 何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 QQ

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

An example: the Petersen graph

ミメス ヨメ

 \sim

(ロ) (伊)

 \equiv

 299

Basic definitions

A vertex $v \in V$ is *incident* with an edge $e \in E$ if $v \in e$. The incident vertices of an edge are sometimes called *endvertices*. Two vertices *u*, $v \in V$ are *adjacent*, denoted by $u \sim v$, if $\{u, v\} \in E$. The set of adjacent vertices of *v*, denoted by $N(v)$, is called the *neighborhood* of *v* and its size, i.e. $\delta(v) := |N(v)|$, is the *degree* of *v*. A vertex *v* with $\delta(v) = 0$ is called *isolated*. A graph is called *d -regular* if all its degrees are *d*. A countable graph is *locally finite* if all its vertices have a finite degree.

Example

All vertices in the Petersen graph have degree 3, i.e., it is 3-regular. In particular there is no isolated vertex.

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

Adjacency matrix

Let $G = (V, E)$ be a graph with $n = |V|$. The *adjacency matrix A* of *G* is the *n* × *n* matrix defined as $A_{xy} = 1$ if $\{x, y\} \in E$ and 0 otherwise.

Example

The adjacency matrix of a *triangle* (i.e. 3 vertices with all non-loop edges) is

$$
\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}
$$

イロメ イ押 メイヨメ イヨメ

E

 QQ

Paths, cycles, and spanning trees I

Definition (Subgraphs)

A *subgraph* of $G = (V, E)$ is a graph $G' = (V', E')$ with $V' \subseteq V$ and $E' \subseteq E$. The subgraph G' is said to be *induced* if

$$
E' = \{ \{x, y\} : x, y \in V', \ \{x, y\} \in E \},
$$

i.e., it contains all edges of *G* between the vertices of V'. In that case the notation $G' := G[V']$ is used. A subgraph is said to be spanning if $V' = V$. A subgraph containing all non-loop edges between its vertices is called a *complete subgraph* or *clique*.

Example

The Petersen graph contains no triangle, i[nd](#page-5-0)[uc](#page-7-0)[e](#page-5-0)[d](#page-6-0) [o](#page-7-0)[r](#page-1-0) [n](#page-2-0)[o](#page-17-0)[t](#page-18-0)[.](#page-0-0)

 \circ a \circ

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

An example: the Petersen graph

ミメス ヨメ

 \sim

(ロ) (伊)

 \equiv

 299

Paths, cycles, and spanning trees II

A *path* in *G* (usually called a "walk" but that term has a different meaning in probability) is a sequence of (not necessarily distinct) vertices $x_0 \sim x_1 \sim \cdots \sim x_k.$ The number of edges, k , is called the *length* of the path. If the *endvertices* x_0 , x_k coincide, i.e. $x_0 = x_k$, we call the path a *cycle*. If the vertices are all distinct (except possibly for the endvertices), we say that the path (or cycle) is *self-avoiding*. A self-avoiding path or cycle can be seen as a (not necessarily induced) subgraph of *G*. We write $u \leftrightarrow v$ if there is a path between *u* and *v*. Clearly \leftrightarrow is an equivalence relation. The equivalence classes are called *connected components*. The length of the shortest self-avoiding path connecting two distinct vertices *u*, *v* is called the *araph distance* [b](#page-9-0)etween *[u](#page-1-0)* and *[v](#page-17-0)*, deno[ted](#page-7-0) b[y](#page-7-0) $\rho(u, v)$ $\rho(u, v)$ $\rho(u, v)$ $\rho(u, v)$ $\rho(u, v)$ $\rho(u, v)$ [.](#page-0-0)

 Ω

Paths, cycles, and spanning trees III

Definition (Connectivity)

A graph is *connected* if any two vertices are linked by a path, i.e., if $u \leftrightarrow v$ for all $u, v \in V$. Or put differently, if there is only one connected component.

Example

The Petersen graph is connected.

A *forest* is a graph with no self-avoiding cycle. A *tree* is a connected forest. Vertices of degree 1 are called *leaves*. A *spanning tree* of *G* is a subgraph which is a tree and is also spanning.

イロメ イ押 メイヨメ イヨメ

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

An example: the Petersen graph

ミメス ヨメ

 \sim

(ロ) (伊)

 \equiv

 299

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Examples of finite graphs

- Complete graph *Kⁿ*
- Cycle *Cⁿ*
- Rooted *b*-ary trees $\widehat{\mathbb{T}}_b^\ell$
- Hypercube {0, 1} *n*

イロメ イ押 メイヨメ イヨメ

B

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Examples of infinite graphs

- \bullet *d*-ary tree \mathbb{T}_d
- Lattice L *d*

Sébastien Roch, UW–Madison **[Modern Discrete Probability – Review and Models](#page-0-0)**

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

 299

Transitive graphs

Definition (Graph automorphisms)

An *automorphism* of a graph $G = (V, E)$ is a bijection ϕ of V to itself that preserves the edges, i.e., such that $\{x, y\} \in E$ if and only if $\{\phi(x), \phi(y)\}\in E$. A graph $G = (V, E)$ is *vertex-transitive* if for any $u, v \in V$ there is an automorphism mapping u to v .

Example

Any "rotation" of the Petersen graph is an automorphism.

Example

 \mathbb{T}_d is vertex-transitive. $\widehat{\mathbb{T}}_b^\ell$ has many automorphisms but is not vertex-transitive.

Sébastien Roch, UW–Madison **[Modern Discrete Probability – Review and Models](#page-0-0)**

 $\alpha \alpha$

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Flows I

Definition (Flow)

Let $G = (V, E)$ be a connected graph with two distinguished, distinct vertex sets, a *source-set A* ⊆ *V* and a *sink-set Z*. Let $c: E \to \mathbb{R}_+$ be a *capacity* function. A *flow* on the *network* (*G*, *c*) from source A to sink Z is a function $f: V \times V \to \mathbb{R}$ such that:

- F1 *(Antisymmetry)* $f(x, y) = -f(y, x), \forall x, y \in V$.
- *F2 (Capacity constraint)* $|f(x, y)| < c(e), \forall e = \{x, y\} \in E$, and $f(x, y) = 0$ otherwise.
- F3 *(Flow-conservation constraint)*

$$
\sum_{y:y\sim x}f(x,y)=0, \qquad \forall x\in V\setminus (A\cup Z).
$$

 200

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Flows II

 $\mathsf{For} \,\, U, \, W \subseteq V$ and $F \subseteq E,$ let $f(U, \, W) := \sum_{u \in U, w \in W} f(u, \, w)$ and $c(F) := \sum_{e \in F} c(e)$. The *strength* of *f* is $|f| := f(A, A^c)$.

Definition (Cutset)

Let *F* ⊆ *E*. We call *F* a *cutset* separating *A* and *Z* if all paths connecting *A* and *Z* include an edge in *F*. Let *A^F* be the set of vertices not separated from A by F , and similarly for Z_F .

Lemma (Max flow \leq *min cut):* For any cutset *F*, $|f| \leq c(F)$. Proof: $f(A, A^c) \stackrel{(F3)}{=} f(A, A^c) + \sum_{u \in A_F \setminus A} f(u, V) \stackrel{(F1)}{=} f(A_F, A_F^c) \stackrel{(F2)}{\leq} c(F).$

イロト イ押 トイヨ トイヨ トー

B

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Flows III

Theorem (Max-Flow Min-Cut Theorem)

 $\max\{|f| : \text{flow } f\} = \min\{c(F) : \text{cutset } F\}.$

Proof: Let *f* be an optimal flow. (The sup is achieved by compactness.) An *augmentable path* is a self-avoiding path $x_0 \sim \cdots \sim x_k$ with $x_0 \in A$, $x_i \notin A \cup Z$ for all $i \neq 0, k$, and $f(x_{i-1}, x_i) < c({x_{i-1}, x_i})$ for all *i*. By optimality of *f* there cannot be such a path with $x_k \in Z$, otherwise we could push more flow through it. Let $B \subseteq V \setminus (A \cup Z)$ be the set of all possible final vertices in an augmentable path. Let *F* be the edge set between *B* and *B c* . Note that *f*(*x*, *y*) = *c*(*e*) for all $e = \{x, y\} \in F$ with $x \in B$ and $y \in B^c$, and that *F* is a cutset. So we have equality in the previous lemma with $B = A_F$.

イロト イ押 トイヨ トイヨ トー

÷.

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Directed graphs

Definition

A *directed graph* (or digraph for short) is a pair $G = (V, E)$ where *V* is a set of *vertices* (or nodes, sites) and $E \subseteq V^2$ is a set of *directed edges*.

A *directed path* is a sequence of vertices x_0, \ldots, x_k with (x_{i-1}, x_i) ∈ *E* for all $i = 1, \ldots, k$. We write $u \rightarrow v$ if there is such a path with $x_0 = u$ and $x_k = v$. We say that $u, v \in V$ *communicate*, denoted by $u \leftrightarrow v$, if $u \rightarrow v$ and $v \rightarrow u$. The \leftrightarrow relation is clearly an equivalence relation. The equivalence classes of ↔ are called the *(strongly) connected components* of *G*.

イロト イ押 トイヨ トイヨト

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Markov chains I

Definition (Stochastic matrix)

Let *V* be a finite or countable space. A *stochastic matrix* on *V* is a nonnegative matrix $P = (P(i, j))_{i,j \in V}$ satisfying

$$
\sum_{j\in V} P(i,j)=1, \qquad \forall i\in V.
$$

Let μ be a probability measure on V. One way to construct a *Markov chain* (*Xt*) on *V* with transition matrix *P* and initial distribution μ is the following. Let $X_0 \sim \mu$ and let $(Y(i, n))_{i \in V, n \geq 1}$ be a mutually independent array with $Y(i, n) \sim P(i, \cdot)$. Set inductively $X_n := Y(X_{n-1}, n)$, $n > 1$.

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

 2990

B

Markov chains II

So in particular:

$$
\mathbb{P}[X_0 = x_0, \ldots, X_t = x_t] = \mu(x_0) P(x_0, x_1) \cdots P(x_{t-1}, x_t).
$$

We use the notation \mathbb{P}_x , \mathbb{E}_x for the probability distribution and expectation under the chain started at *x*. Similarly for \mathbb{P}_{μ} , \mathbb{E}_{μ} where μ is a probability measure.

Example (Simple random walk)

Let $G = (V, E)$ be a finite or countable, locally finite graph. *Simple random walk* on *G* is the Markov chain on *V*, started at an arbitrary vertex, which at each time picks a uniformly chosen neighbor of the current state.

K ロ ト K 何 ト K ヨ ト K ヨ ト

 \equiv

 2990

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Markov chains III

The *transition graph* of a chain is the directed graph on *V* whose edges are the transitions with nonzero probabilities.

Definition (Irreducibility)

A chain is *irreducible* if *V* is the unique connected component of its transition graph, i.e., if all pairs of states communicate.

Example

Simple random walk on *G* is irreducible if and only if *G* is connected.

イロメ イ押 メイヨメ イヨメ

Markov property I

Let (*Xt*) be a Markov chain with transition matrix *P* and initial distribution μ . Let $\mathcal{F}_t = \sigma(X_0, \ldots, X_t)$. A fundamental property of Markov chains known as the *Markov property* is that, given the present, the future is independent of the past. In its $\text{simplest form: } \mathbb{P}[X_{t+1} = y | \mathcal{F}_t] = \mathbb{P}_{X_t}[X_{t+1} = y] = P(X_t, y).$ More generally, let $f: V^{\infty} \to \mathbb{R}$ be bounded, measurable and let $F(x) := \mathbb{E}_{x}[f((X_{t})_{t>0})]$, then (see [D, Thm 6.3.1]):

Theorem (Markov property)

$$
\mathbb{E}[f((X_{s+t})_{t\geq 0})\,|\,\mathcal{F}_s]=F(X_s)\qquad a.s.
$$

We will come back to the "strong" Markov property later.

イロト イ押 トイヨ トイヨト

Markov property II

Let (*Xt*) be a Markov chain with transition matrix *P*. We define $P^{t}(x, y) := \mathbb{P}_{x}[X_{t} = y].$

Theorem (Chapman-Kolmogorov)

$$
P^{t}(x, z) = \sum_{y \in V} P^{s}(x, y) P^{t-s}(y, z), \qquad s \in \{0, 1, ..., t\}.
$$

Proof: $\mathbb{P}_x[X_t = z \mid \mathcal{F}_s] = F(X_s)$ with $F(y) := \mathbb{P}_y[X_{t-s} = z]$ and take E*^x* on each side.

If we write μ_s for the law of X_s as a row vector, then

$$
\mu_{\texttt{s}}=\mu_{\texttt{0}}\textsf{P}^{\texttt{s}}
$$

where here P^s is the matrix product of P by itself *s* times.

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

÷. 2990

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Aperiodicity

Definition (Aperiodicity)

A chain is said to be *aperiodic* if for all $x \in V$

$$
\gcd\{t: P^t(x,x) > 0\} = 1.
$$

Example (Lazy walk)

A *lazy, simple random walk* on *G* is a Markov chain such that, at each time, it stays put with probability 1/2 or chooses a uniformly random neighbor of the current state otherwise. Such a walk is aperiodic.

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

Stationary distribution I

Definition (Stationary distribution)

Let (*Xt*) be a Markov chain with transition matrix *P*. A *stationary measure* π is a measure such that

$$
\sum_{x\in V}\pi(x)P(x,y)=\pi(y),\qquad \forall y\in V,
$$

or in matrix form $\pi = \pi P$. We say that π is a *stationary distribution* if in addition π is a probability measure.

Example

The measure $\pi \equiv 1$ is stationary for simple random walk on \mathbb{L}^d .

イロメ イ何 メイヨメ イヨメ

 290

Stationary distribution II

Theorem (Existence and uniqueness: finite case)

If P is irreducible and has a finite state space, then it has a unique stationary distribution.

Definition (Reversible chain)

A transition matrix *P* is *reversible* w.r.t. a measure η if $\eta(x)P(x, y) = \eta(y)P(y, x)$ for all $x, y \in V$. By summing over *y*, such a measure is necessarily stationary.

By induction, if (X_t) is reversible w.r.t. a stationary distribution π

$$
\mathbb{P}_{\pi}[X_0=x_0,\ldots,X_t=x_t]=\mathbb{P}_{\pi}[X_0=x_t,\ldots,X_t=x_0].
$$

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

 QQ

Stationary distribution III

Example

Let (*Xt*) be simple random walk on a connected graph *G*. Then (X_t) is reversible w.r.t. $\eta(v) := \delta(v)$.

Example

The Metropolis algorithm modifies a given irreducible symmetric chain *Q* to produce a new chain *P* with the same transition graph and a prescribed positive stationary distribution π . The definition is of the new chain is:

$$
P(x,y) := \begin{cases} Q(x,y) \left[\frac{\pi(y)}{\pi(x)} \wedge 1 \right], & \text{if } x \neq y, \\ 1 - \sum_{z \neq x} P(x,z), & \text{otherwise.} \end{cases}
$$

 $\alpha \alpha$

[Review of graph theory](#page-2-0) [Review of Markov chain theory](#page-18-0)

Proof of Metropolis chain reversibility

Proof: Suppose $x \neq y$ and $\pi(x) \geq \pi(y)$. Then, by the definition of *P*, we have

$$
\pi(x)P(x,y) = \pi(x)Q(x,y)\frac{\pi(y)}{\pi(x)} = Q(x,y)\pi(y) \n= Q(y,x)\pi(y) = P(y,x)\pi(y),
$$

where we used the symmetry of *Q*. Moreover $P(x, z) \le Q(x, z)$ so $\sum_{z\neq x} P(x,z) \leq 1.$

イロン イ押ン イミン イヨン ニヨー

Convergence

Theorem (Convergence to stationarity)

Suppose P is irreducible, aperiodic and has stationary distribution π *. Then, for all x, y, P^t*(*x, y*) $\rightarrow \pi$ (*y*) *as t* $\rightarrow +\infty$ *.*

For probability measures µ, ν on *V*, let their *total variation distance* be $\|\mu - \nu\|_{\text{TV}} := \sup_{A \subseteq V} |\mu(A) - \nu(A)|.$

Definition (Mixing time)

The *mixing time* is

$$
t_{\max}(\varepsilon):=\min\{t\geq 0\,:\,d(t)\leq \varepsilon\},
$$

 $\mathsf{where} \; \pmb{\mathit{d}}(t) := \mathsf{max}_{\pmb{\mathit{x}} \in \mathit{V}}\,\|\pmb{\mathit{P}}^t(\pmb{\mathit{x}},\cdot) - \pi(\cdot)\|_{\text{TV}}.$

 Ω

Proofs of total variation distance properties I

Lemma:
$$
||\mu - \nu||_{TV} = \frac{1}{2} \sum_{x \in V} |\mu(x) - \nu(x)|
$$
. *Proof:* Let $B := \{x : \mu(x) \ge \nu(x)\}$. Then, for any $A \subseteq V$, $\mu(A) - \nu(A) \le \mu(A \cap B) - \nu(A \cap B) \le \mu(B) - \nu(B)$, and similarly $\mu(A) = \mu(A) \le \mu(B^c)$. The true bounds are

and similarly $\nu(\pmb{A}) - \mu(\pmb{A}) \leq \nu(\pmb{B}^c) - \mu(\pmb{B}^c).$ The two bounds are equal so $|\mu(A) - \nu(A)| \leq \mu(B) - \nu(B)$, which is achieved at $A = B$. Also

$$
\mu(B) - \nu(B) = \frac{1}{2} [\mu(B) - \nu(B) + \nu(B^{c}) - \mu(B^{c})] = \frac{1}{2} \sum_{x \in V} |\mu(x) - \nu(x)|.
$$

イロン イ押ン イミン イヨン ニヨー

Proofs of total variation distance properties II

Lemma: d(*t*) is non-increasing in *t*. *Proof:*

$$
d(t+1) = \max_{x \in V} \sup_{A \subseteq V} |P^{t+1}(x, A) - \pi(A)|
$$

\n
$$
= \max_{x \in V} \sup_{A \subseteq V} \left| \sum_{z} P(x, z)(P^{t}(z, A) - \pi(A)) \right|
$$

\n
$$
\leq \max_{x \in V} \sum_{z} P(x, z) \sup_{A \subseteq V} |P^{t}(z, A) - \pi(A)|
$$

\n
$$
\leq \max_{z \in V} \sup_{A \subseteq V} |P^{t}(z, A) - \pi(A)|
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

÷.

A little linear algebra I

Assume *V* is finite and $n := |V|$.

Theorem

Any real eigenvalue λ *of P satisfies* $|\lambda|$ < 1.

Proof: Pf = $\lambda f \implies |\lambda| ||f||_{\infty} = ||Pf||_{\infty} = \max_{x} |\sum_{y} P(x, y)f(y)| \leq ||f||_{\infty}$ Assume further that *P* is reversible w.r.t. π . Define

$$
\langle f, g \rangle_{\pi} = \sum_{x \in V} \pi(x) f(x) g(x), \qquad \|f\|_{\pi}^2 = \langle f, f \rangle_{\pi}.
$$

Theorem

There is an orthonormal basis of $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\pi})$ *of real right* e *igenvectors* $\{f_j\}_{j=1}^n$ $\{f_j\}_{j=1}^n$ $\{f_j\}_{j=1}^n$ $\{f_j\}_{j=1}^n$ $\{f_j\}_{j=1}^n$ *of P with real eigenvalues* $\{\lambda_j\}_{j=1}^n$ *.*

 $\alpha \alpha$

A little linear algebra II

Proof: Let D_{π} be the diagonal matrix with π on the diagonal. By reversibility,

$$
M(x,y):=\sqrt{\frac{\pi(x)}{\pi(y)}}P(x,y)=\sqrt{\frac{\pi(y)}{\pi(x)}}P(y,x)=:M(y,x).
$$

So $M = (M(x,y))_{x,y} = D_{\pi}^{1/2}PD_{\pi}^{-1/2}$, as a symmetric matrix, has real eigenvectors $\{\phi_j\}_{j=1}^n$ forming an orthonormal basis of \mathbb{R}^n with corresponding eigenvalues $\{\lambda_j\}_{j=1}^n$. Define $f_j:=D_{\pi}^{-1/2}\phi_j.$ Then

$$
Pf_j = PD_{\pi}^{-1/2} \phi_j = D_{\pi}^{-1/2} D_{\pi}^{1/2} PD_{\pi}^{-1/2} \phi_j = D_{\pi}^{-1/2} M \phi_j = \lambda_j D_{\pi}^{-1/2} \phi_j = \lambda_j f_j,
$$

and

$$
\langle f_i, f_j \rangle_{\pi} = \langle D_{\pi}^{-1/2} \phi_i, D_{\pi}^{-1/2} \phi_j \rangle_{\pi} = \sum_{x} \pi(x) [\pi(x)^{-1/2} \phi_i(x)][\pi(x)^{-1/2} \phi_j(x)] = \langle \phi_i, \phi_j \rangle.
$$

イロト イ押 トイヨ トイヨ トー

÷,

 QQ

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

[Preliminaries](#page-1-0)

- [Review of graph theory](#page-2-0)
- [Review of Markov chain theory](#page-18-0)

2 [Some fundamental models](#page-33-0)

- [Random walks on graphs](#page-34-0)
- **•** [Percolation](#page-36-0)
- [Some random graph models](#page-38-0)
- [Markov random fields](#page-40-0)
- [Interacting particles on finite graphs](#page-42-0)

イロメ イ何 メイヨメ イヨメ

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Random walk on a graph

Definition

Let $G = (V, E)$ be a finite or countable, locally finite graph. *Simple random walk* on *G* is the Markov chain on *V*, started at an arbitrary vertex, which at each time picks a uniformly chosen neighbor of the current state.

Questions:

- How often does the walk return to its starting point?
- How long does it take to visit all vertices once or a particular subset of vertices for the first time?
- How fast does it approach stationarity?

イロメ イ押 メイヨメ イヨメ

 290

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Random walk on a network

Definition

Let $G = (V, E)$ be a finite or countable, locally finite graph. Let $c: E \to \mathbb{R}_+$ be a positive edge weight function on *G*. We call $\mathcal{N} = (G, c)$ a *network*. Random walk on \mathcal{N} is the Markov chain on *V*, started at an arbitrary vertex, which at each time picks a neighbor of the current state proportionally to the weight of the corresponding edge.

Any countable, reversible Markov chain can be seen as a random walk on a network (not necessarily locally finite) by setting $c(e) := \pi(x)P(x, y) = \pi(y)P(y, x)$ for all $e = \{x, y\} \in E$.

 290

B

イロト イ押 トイヨ トイヨト

[Random walks on graphs](#page-34-0) [Percolation](#page-36-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Bond percolation I

Definition

Let $G = (V, E)$ be a finite or countable, locally finite graph. The *bond percolation* process on *G* with density $p \in [0, 1]$, whose measure is denoted by \mathbb{P}_p , is defined as follows: each edge of *G* is independently set to *open* with probability *p*, otherwise it is set to *closed*. Write $x \Leftrightarrow y$ if $x, y \in V$ are connected by a path all of whose edges are open. The *open cluster* of *x* is

$$
\mathcal{C}_x := \{y \in V \,:\, x \Leftrightarrow y\}.
$$

イロメ イ押 メイヨメ イヨメ

[Random walks on graphs](#page-34-0) [Percolation](#page-36-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Bond percolation II

We will mostly consider bond percolation on \mathbb{L}^d or $\mathbb{T}_d.$

Questions:

- **•** For which values of *p* is there an infinite open cluster?
- How many infinite clusters are there?
- What is the probability that *y* is in the open cluster of *x*?

イロメ イ押 メイヨメ イヨメ

Þ

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Random graphs: Erdös-Rényi

Definition

Let $V = [n]$ and $p \in [0, 1]$. The *Erdös-Rényi graph G* = (*V*, *E*) on *n* vertices with density *p* is defined as follows: for each pair $x \neq y$ in *V*, the edge $\{x, y\}$ is in *E* with probability *p* independently of all other edges. We write $G \sim \mathbb{G}_{n,p}$ and we denote the corresponding measure by P*n*,*p*.

Questions:

- What is the probability of observing a triangle?
- Is *G* connected? If not, how large are the components?
- • What is the typical chromatic number (i.e., the smallest number of colors needed to color the vertices so that no two adjacent vertices share the same [co](#page-37-0)l[or](#page-39-0)[\)](#page-37-0)[?](#page-38-0)

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Random graphs: preferential attachment

Definition

The *preferential attachment process* produces a sequence of graphs $(G_t)_{t>1}$ as follows. We start at time 1 with two vertices, denoted v_0 and v_1 , connected by an edge. At time *t*, we add vertex *v^t* with a single edge connecting it to an old vertex, which is picked proportionally to its degree. We write $(G_t)_{t>1} \sim PA_1$.

Questions:

- How are the degrees distributed?
- What is the typical distance between two vertices?

イロメ イ押 メイヨメ イヨメ

 290

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Gibbs random fields I

Definition

Let *S* be a finite set and let $G = (V, E)$ be a finite graph. Denote by K the set of all cliques of G . A positive probability measure μ on $\mathcal{X}:=\mathcal{S}^V$ is called a *Gibbs random field* if there exist *clique potentials* $\phi_{\pmb{K}}: \pmb{S}^{\pmb{K}} \to \mathbb{R}, \, \pmb{K} \in \mathcal{K},$ *such that*

$$
\mu(x) = \frac{1}{\mathcal{Z}} \exp\left(\sum_{K \in \mathcal{K}} \phi_K(x_K)\right),
$$

where x_K is x restricted to the vertices of K and $\mathcal Z$ is a normalizing constant.

→ 唐 > → 唐 >

4 ロ ト ィ *同* ト

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Gibbs random fields II

Example

For β > 0, the *ferromagnetic Ising model* with inverse temperature β is the Gibbs random field with $S := \{-1, +1\}$, $\phi_{\{i,j\}}(\sigma_{\{i,j\}})=\beta\sigma_i\sigma_j$ and $\phi_{\mathcal{K}}\equiv 0$ if $|\mathcal{K}|\neq 2.$ The function $\mathcal{H}(\sigma) := -\sum_{\{i,j\} \in E} \sigma_i \sigma_j$ is known as the *Hamiltonian*. The normalizing constant $\mathcal{Z} := \mathcal{Z}(\beta)$ is called the *partition function*. The states $(\sigma_i)_{i \in V}$ are referred to as *spins*.

Questions:

• How fast is correlation decaying?

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

B

 QQ

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Interacting particles: Glauber dynamics I

Definition

Let μ_{β} be the Ising model with inverse temperature $\beta > 0$ on a graph $G = (V, E)$. The *(single-site) Glauber dynamics* is the Markov chain on $\mathcal{X}:=\{-1,+1\}^V$ which at each time:

- selects a site *i* ∈ *V* uniformly at random, and
- updates the spin at *i* according to μ_{β} conditioned on agreeing with the current state at all sites in $V\setminus\{i\}$.

イロメ イ押 メイヨメ イヨメ

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Interacting particles: Glauber dynamics II

Specifically, for $\gamma \in \{-1,+1\}$, $i \in \Lambda$, and $\sigma \in \mathcal{X}$, let $\sigma^{i,\gamma}$ be the configuration σ with the spin at *i* being set to γ . Let $n = |V|$ and $\mathcal{S}_i(\sigma) := \sum_{j \sim i} \sigma_j$. Because the Ising measure factorizes, the nonzero entries of the transition matrix are

$$
Q_{\beta}(\sigma,\sigma^{i,\gamma}):=\frac{1}{n}\cdot\frac{e^{\gamma\beta S_i(\sigma)}}{e^{-\beta S_i(\sigma)}+e^{\beta S_i(\sigma)}}.
$$

Theorem

The Glauber dynamics is reversible w.r.t. $μ_β$.

Question: How quickly does the chain approach μ_B ?

イロト イ団ト イヨト イヨト

[Random walks on graphs](#page-34-0) [Percolation](#page-36-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Interacting particles: Glauber dynamics III

Proof of the theorem: This chain is clearly irreducible. For all $\sigma \in \mathcal{X}$ and $i \in V$, let $S_{\neq i}(\sigma) := \mathcal{H}(\sigma^{i,+}) + S_i(\sigma) = \mathcal{H}(\sigma^{i,-}) - S_i(\sigma).$ We have

$$
\mu_{\beta}(\sigma^{i,-}) Q_{\beta}(\sigma^{i,-},\sigma^{i,+}) = \frac{e^{-\beta S_{\neq i}(\sigma)} e^{-\beta S_{i}(\sigma)}}{\mathcal{Z}(\beta)} \cdot \frac{e^{\beta S_{i}(\sigma)}}{n[e^{-\beta S_{i}(\sigma)} + e^{\beta S_{i}(\sigma)}]}
$$

\n
$$
= \frac{e^{-\beta S_{\neq i}(\sigma)}}{n\mathcal{Z}(\beta)[e^{-\beta S_{i}(\sigma)} + e^{\beta S_{i}(\sigma)}]}\n= \frac{e^{-\beta S_{\neq i}(\sigma)} \theta^{\beta S_{i}(\sigma)}}{\mathcal{Z}(\beta)} \cdot \frac{e^{-\beta S_{i}(\sigma)}}{n[e^{-\beta S_{i}(\sigma)} + e^{\beta S_{i}(\sigma)}]}\n= \mu_{\beta}(\sigma^{i,+}) Q_{\beta}(\sigma^{i,+},\sigma^{i,-}).
$$

イロト イ押 トイヨ トイヨト

B

[Random walks on graphs](#page-34-0) [Some random graph models](#page-38-0) [Markov random fields](#page-40-0) [Interacting particles on finite graphs](#page-42-0)

Interacting particles: voter model

Definition

Let $S := \{0, 1\}$ and let $G = (V, E)$ be a finite, connected graph. The *voter model* on *G* is the Markov chain (η_t) on \mathcal{S}^V which, at each time *t*, picks a uniform site $i \in V$ as well as a uniform neighbor $j \sim i$ and sets $n_t(i) := n_{t-1}(i)$.

Questions:

How long does it take to reach one of the two *absorbing states*, i.e., the all-0 and all-1 configurations?

イロト イ押 トイヨ トイヨト

画

 QQ