Modern Discrete Probability

III - Stopping times and martingales Review

> Sébastien Roch UW-Madison Mathematics

October 15, 2014

くロト (過) (目) (日)

ъ

1 Conditioning

2 Stopping times

- Definitions and examples
- Some useful results
- Application: Hitting times and cover times

3 Martingales

- Definitions and examples
- Some useful results
- Application: critical percolation on trees

・ 回 ト ・ ヨ ト ・ ヨ ト

Conditioning I

Theorem (Conditional expectation)

Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -field. Then there exists a (a.s.) unique $Y \in L^1(\Omega, \mathcal{G}, \mathbb{P})$ (note the \mathcal{G} -measurability) s.t.

 $\mathbb{E}[Y;G] = \mathbb{E}[X;G], \ \forall G \in \mathcal{G}.$

Such a Y is called a version of the conditional expectation of X given \mathcal{G} and is denoted by $\mathbb{E}[X | \mathcal{G}]$.

Theorem (Conditional expectation: L² case)

Let $\langle U, V \rangle = \mathbb{E}[UV]$. Let $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -field. Then there exists a (a.s.) unique $Y \in L^2(\Omega, \mathcal{G}, \mathbb{P})$ s.t.

$$\|X - Y\|_2 = \inf\{\|X - W\|_2 \ : \ W \in L^2(\Omega, \mathcal{G}, \mathbb{P})\},\$$

and, moreover, $\langle Z, X - Y \rangle = 0, \ \forall Z \in L^2(\Omega, \mathcal{G}, \mathbb{P}).$

Conditioning II

In addition to linearity and the usual inequalities (e.g. Jensen's inequality, etc.) and convergence theorems (e.g. dominated convergence, etc.). We highlight the following three properties:

Lemma (Taking out what is known)

If $Z \in \mathcal{G}$ is bounded then $\mathbb{E}[ZX | \mathcal{G}] = Z \mathbb{E}[X | \mathcal{G}]$.

Lemma (Role of independence)

If \mathcal{H} is independent of $\sigma(\sigma(X), \mathcal{G})$, then $\mathbb{E}[X | \sigma(\mathcal{G}, \mathcal{H})] = \mathbb{E}[X | \mathcal{G}]$.

Lemma (Tower property (or law of total probability))

We have $\mathbb{E}[\mathbb{E}[X | \mathcal{G}]] = \mathbb{E}[X]$. In fact, if $\mathcal{H} \subseteq \mathcal{G}$ is a σ -field

 $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}] = \mathbb{E}[X \mid \mathcal{H}].$

Definitions and examples Some useful results Application: Hitting times and cover times

イロト イポト イヨト イヨト

1 Conditioning

2 Stopping times

- Definitions and examples
- Some useful results
- Application: Hitting times and cover times

3 Martingales

- Definitions and examples
- Some useful results
- Application: critical percolation on trees

Conditioning Definitions Stopping times Some usef Martingales Application

Definitions and examples Some useful results Application: Hitting times and cover times

Filtrations I

Definition

A filtered space is a tuple $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{Z}_+}, \mathbb{P})$ where:

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space
- $(\mathcal{F}_t)_{t\in\mathbb{Z}_+}$ is a filtration, i.e.,

$$\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_\infty := \sigma(\cup \mathcal{F}_t) \subseteq \mathcal{F}.$$

where each \mathcal{F}_t is a σ -field.

Example

Let X_0, X_1, \ldots be i.i.d. random variables. Then a filtration is given by

$$\mathcal{F}_t = \sigma(X_0,\ldots,X_t), \ \forall t \geq 0.$$

Definitions and examples Some useful results Application: Hitting times and cover times

イロト 不得 とくほと くほとう

3

Filtrations II

Fix $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{Z}_+}, \mathbb{P})$.

Definition (Adapted process)

A process $(W_t)_t$ is *adapted* if $W_t \in \mathcal{F}_t$ for all t.

Example (Continued)

Let $(S_t)_t$ where $S_t = \sum_{i \le t} X_i$ is adapted.

Definitions and examples Some useful results Application: Hitting times and cover times

Stopping times I

Definition

A random variable $\tau : \Omega \to \overline{\mathbb{Z}}_+ := \{0, 1, \dots, +\infty\}$ is called a *stopping time* if

$$\{\tau \leq t\} \in \mathcal{F}_t, \ \forall t \in \overline{\mathbb{Z}}_+,$$

or, equivalently, $\{\tau = t\} \in \mathcal{F}_t$, $\forall t \in \mathbb{Z}_+$. (To see the equivalence, note $\{\tau = t\} = \{\tau \leq t\} \setminus \{\tau \leq t-1\}$, and $\{\tau \leq t\} = \bigcup_{i \leq t} \{\tau = i\}$.)

Example

Let $(A_t)_{t \in \mathbb{Z}_+}$, with values in (E, \mathcal{E}) , be adapted and $B \in \mathcal{E}$. Then

$$\tau = \inf\{t \ge 0 : A_t \in B\},\$$

is a stopping time.

Definitions and examples Some useful results Application: Hitting times and cover times

・ロト ・ 同ト ・ ヨト ・ ヨト

Stopping times II

Definition (The σ -field \mathcal{F}_{τ})

Let τ be a stopping time. Denote by \mathcal{F}_{τ} the set of all events F such that $\forall t \in \mathbb{Z}_+ F \cap \{\tau = t\} \in \mathcal{F}_t$.

Lemma

$$\mathcal{F}_{\tau} = \mathcal{F}_t \text{ if } \tau \equiv t, \ \mathcal{F}_{\tau} = \mathcal{F}_{\infty} \text{ if } \tau \equiv \infty \text{ and } \mathcal{F}_{\tau} \subseteq \mathcal{F}_{\infty} \text{ for any } \tau.$$

Lemma

If (X_t) is adapted and τ is a stopping time then $X_{\tau} \in \mathcal{F}_{\tau}$.

Lemma

If σ, τ are stopping times then $\mathcal{F}_{\sigma \wedge \tau} \subseteq \mathcal{F}_{\tau}$.

Definitions and examples Some useful results Application: Hitting times and cover times

ヘロト 人間 とく ヨ とく ヨ と

Examples

Let (X_t) be a Markov chain on a countable space V.

Example (Hitting time)

The first visit time and first return time to $x \in V$ are

$$au_x := \inf\{t \ge 0 : X_t = x\} \text{ and } au_x^+ := \inf\{t \ge 1 : X_t = x\}.$$

Similarly, τ_B and τ_B^+ are the first visit and first return to $B \subseteq V$.

Example (Cover time)

Assume V is finite. The *cover time* of (X_t) is the first time that all states have been visited, i.e.,

$$\tau_{\rm cov} := \inf\{t \ge 0 : \{X_0, \dots, X_t\} = V\}.$$

Definitions and examples Some useful results Application: Hitting times and cover times

・ロット (雪) () () () ()

Strong Markov property

F

Let (X_t) be a Markov chain and let $\mathcal{F}_t = \sigma(X_0, \ldots, X_t)$. The Markov property extends to stopping times. Let τ be a stopping time with $\mathbb{P}[\tau < +\infty] > 0$ and let $f_t : V^{\infty} \to \mathbb{R}$ be a sequence of measurable functions, uniformly bounded in *t* and let $F_t(x) := \mathbb{E}_x[f_t((X_t)_{t>0})]$, then (see [D, Thm 6.3.4]):

Theorem (Strong Markov property)

$$\mathbb{E}[f_{\tau}((X_{\tau+t})_{t\geq 0}) | \mathcal{F}_{\tau}] = F_{\tau}(X_{\tau}) \quad on \{\tau < +\infty\}$$

Proof: Let $A \in \mathcal{F}_{\tau}$. Summing over the value of τ and using Markov

$$\mathbb{E}[f_{\tau}((X_{\tau+t})_{t\geq 0}); A \cap \{\tau < +\infty\}] = \sum_{s\geq 0} \mathbb{E}[f_{s}((X_{s+t})_{t\geq 0}); A \cap \{\tau = s\}]$$

= $\sum_{s\geq 0} \mathbb{E}[F_{s}(X_{s}); A \cap \{\tau = s\}] = \mathbb{E}[F_{\tau}(X_{\tau}); A \cap \{\tau < +\infty\}].$

Definitions and examples Some useful results Application: Hitting times and cover times

Reflection principle I

Theorem

Let $X_1, X_2, ...$ be i.i.d. with a distribution symmetric about 0 and let $S_t = \sum_{i < t} X_i$. Then, for b > 0,

$$\mathbb{P}\left[\sup_{i\leq t}S_i\geq b\right]\leq 2\,\mathbb{P}[S_t\geq b].$$

Proof: Let $\tau := \inf\{i \le t : S_i \ge b\}$. By the strong Markov property, on $\{\tau < t\}, S_t - S_{\tau}$ is independent on \mathcal{F}_{τ} and is symmetric about 0. In particular, it has probability at least 1/2 of being greater or equal to 0 (which implies that S_t is greater or equal to *b*). Hence

$$\mathbb{P}[S_t \ge b] \ge \mathbb{P}[\tau = t] + \frac{1}{2}\mathbb{P}[\tau < t] \ge \frac{1}{2}\mathbb{P}[\tau \le t].$$

ヘロン 人間 とくほど くほとう

Definitions and examples Some useful results Application: Hitting times and cover times

イロト イポト イヨト イヨト

Reflection principle II

Theorem

Let (S_t) be simple random walk on \mathbb{Z} . Then, $\forall a, b, t > 0$,

$$\mathbb{P}_0[S_t = b + a] = \mathbb{P}_0\left[S_t = b - a, \sup_{i \le t} S_i \ge b\right]$$

Theorem (Ballot theorem)

In an election with n voters, candidate A gets α votes and candidate B gets $\beta < \alpha$ votes. The probability that A leads B throughout the counting is $\frac{\alpha-\beta}{n}$.

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: Hitting times and cover times

Recurrence I

Let (*X_t*) be a Markov chain on a countable state space *V*. The *time of k-th return to y* is (letting $\tau_y^0 := 0$)

$$\tau_y^k := \inf\{t > \tau_y^{k-1} : X_t = y\}.$$

In particular, $\tau_y^1 \equiv \tau_y^+$. Define $\rho_{xy} := \mathbb{P}_x[\tau_y^+ < +\infty]$. Then by the strong Markov property

$$\mathbb{P}_{x}[\tau_{y}^{k}<+\infty]=\rho_{xy}\rho_{yy}^{k-1}.$$

Letting $N_y := \sum_{t>0} \mathbb{1}_{\{X_t=y\}}$, by linearity $\mathbb{E}_x[N_y] = \frac{\rho_{xy}}{1-\rho_{yy}}$. So either $\rho_{yy} < 1$ and $\mathbb{E}_y[N_y] < +\infty$ or $\rho_{yy} = 1$ and $\tau_y^k < +\infty$ a.s. for all k.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Definitions and examples Some useful results Application: Hitting times and cover times

ヘロト 人間 ト ヘヨト ヘヨト

э

Recurrence II

Definition (Recurrent state)

A state *x* is *recurrent* if $\rho_{xx} = 1$. Otherwise it is *transient*. A chain is recurrent or transient if all its states are. If *x* is recurrent and $\mathbb{E}_x[\tau_x^+] < +\infty$, we say that *x* is *positive recurrent*.

Lemma: If *x* is recurrent and $\rho_{xy} > 0$ then *y* is recurrent and $\rho_{yx} = \rho_{xy} = 1$. A subset $C \subseteq V$ is *closed* if $x \in C$ and $\rho_{xy} > 0$ implies $y \in C$. A subset $D \subseteq V$ is *irreducible* if $x, y \in D$ implies $\rho_{xy} > 0$.

Theorem (Decomposition theorem)

Let $R := \{x : \rho_{xx} = 1\}$ be the recurrent states of the chain. Then R can be written as a disjoint union $\cup_j R_j$ where each R_j is closed and irreducible.
 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: Hitting times and cover times

Recurrence III

Theorem

Let x be a recurrent state. Then the following defines a stationary measure

$$\mu_{x}(\mathbf{y}) := \mathbb{E}_{x}\left[\sum_{0 \leq t < \tau_{x}^{+}} \mathbb{1}_{\{X_{t}=\mathbf{y}\}}\right].$$

Theorem

If (X_t) is irreducible and recurrent, then the stationary measure is unique up to a constant multiple.

Theorem

If (X_t) is irreducible and has a stationary distribution π , then $\pi(x) = \frac{1}{\mathbb{R} \times \pi}$

$$\frac{1}{\mathbb{E}_{X}\tau_{X}^{+}}$$

э

イロト イポト イヨト イヨト

Definitions and examples Some useful results Application: Hitting times and cover times

イロト イポト イヨト イヨト

Recurrence IV

Example (Simple random walk on \mathbb{Z})

Consider simple random walk on \mathbb{Z} . The chain is clearly irreducible so it suffices to check the recurrence type of 0. First note the periodicity. So we look at S_{2t} . Then by Stirling

$$\mathbb{P}_{0}[S_{2t} = 0] = \binom{2t}{t} 2^{-2t} \sim 2^{-2t} \frac{(2t)^{2t}}{(t^{t})^{2}} \frac{\sqrt{2t}}{\sqrt{2\pi}t} \sim \frac{1}{\sqrt{\pi t}}$$

So

$$\mathbb{E}_0[N_0] = \sum_{t>0} \mathbb{P}_0[S_t = 0] = +\infty,$$

and the chain is recurrent.

Definitions and examples Some useful results Application: Hitting times and cover times

イロト イポト イヨト イヨト

A useful identity I

Theorem (Occupation measure identity)

Consider an irreducible Markov chain $(X_t)_t$ with transition matrix P and stationary distribution π . Let x be a state and σ be a stopping time such that $\mathbb{E}_x[\sigma] < +\infty$ and $\mathbb{P}_x[X_\sigma = x] = 1$. Denote by $\mathscr{G}_{\sigma}(x, y)$ the expected number of visits to y before σ when started at x (the so-called Green function). For any y,

$$\mathscr{G}_{\sigma}(\mathbf{X},\mathbf{Y})=\pi_{\mathbf{Y}}\mathbb{E}_{\mathbf{X}}[\sigma].$$

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: Hitting times and cover time

A useful identity II

Proof: By the uniqueness of the stationary distribution, it suffices to show that $\sum_{y} \mathscr{G}_{\sigma}(x, y) P(y, z) = \mathscr{G}_{\sigma}(x, z), \forall z$, and use the fact that $\sum_{y} \mathscr{G}_{\sigma}(x, y) = \mathbb{E}_{x}[\sigma]$. To check this, because $X_{\sigma} = X_{0}$,

$$\mathscr{G}_{\sigma}(x,z) = \mathbb{E}_{x}\left[\sum_{0 \le t < \sigma} \mathbb{1}_{X_{t}=z}\right] = \mathbb{E}_{x}\left[\sum_{0 \le t < \sigma} \mathbb{1}_{X_{t+1}=z}\right] = \sum_{t \ge 0} \mathbb{P}_{x}[X_{t+1} = z, \sigma > t].$$

Since $\{\sigma > t\} \in \mathcal{F}_t$, applying the Markov property we get

$$\mathcal{G}_{\sigma}(x,z) = \sum_{t \ge 0} \sum_{y} \mathbb{P}_{x}[X_{t} = y, X_{t+1} = z, \sigma > t]$$

$$= \sum_{t \ge 0} \sum_{y} \mathbb{P}_{x}[X_{t+1} = z \mid X_{t} = y, \sigma > t] \mathbb{P}_{x}[X_{t} = y, \sigma > t]$$

$$= \sum_{t \ge 0} \sum_{y} P(y,z) \mathbb{P}_{x}[X_{t} = y, \sigma > t]$$

・ロン ・雪 と ・ ヨ と

Definitions and examples Some useful results Application: Hitting times and cover times

A useful identity III

Here is a typical application of this lemma.

Corollary

In the setting of the previous lemma, for all $x \neq y$,

$$\mathbb{P}_{x}[\tau_{y} < \tau_{x}^{+}] = \frac{1}{\pi_{x}(\mathbb{E}_{x}[\tau_{y}] + \mathbb{E}_{y}[\tau_{x}])}$$

Proof: Let σ be the time of the first visit to x after the first visit to x. Then $\mathbb{E}_x[\sigma] = \mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x] < +\infty$, where we used that the network is finite and connected. The number of visits to x before the first visit to y is geometric with success probability $\mathbb{P}_x[\tau_y < \tau_x^+]$. Moreover the number of visits to x after the first visit to y but before σ is 0 by definition. Hence $\mathscr{G}_{\sigma}(x, y)$ is the mean of the geometric, namely $1/\mathbb{P}_x[\tau_y < \tau_x^+]$. Applying the occupation measure identity gives the result.
 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: Hitting times and cover times

Exponential tail of hitting times I

Theorem

Let (X_t) be a finite, irreducible Markov chain with state space V and initial distribution μ . For $A \subseteq V$, there is $\beta_1 > 0$ and $0 < \beta_2 < 1$ depending on A such that

 $\mathbb{P}_{\mu}[\tau_{\mathsf{A}} > t] \leq \beta_1 \beta_2^t.$

In particular, $\mathbb{E}_{\mu}[\tau_{A}] < +\infty$ for any μ , A.

Proof: For any integer *m*, for some distribution θ ,

 $\mathbb{P}_{\mu}[\tau_{A} > ms \mid \tau_{A} > (m-1)s] = \mathbb{P}_{\theta}[\tau_{A} > s] \leq \max_{v} \mathbb{P}_{x}[\tau_{A} > s] =: 1 - \alpha_{s}.$

Choose *s* large enough that, from any *x*, there is a path to *A* of length at most *s* of positive probability. In particular $\alpha_s > 0$. By induction, $\mathbb{P}_{\mu}[\tau_A > ms] \leq (1 - \alpha_s)^m$ or $\mathbb{P}_{\mu}[\tau_A > t] \leq (1 - \alpha_s)^{\lfloor \frac{t}{s} \rfloor} \leq \beta_1 \beta_2^t$ for $\beta_1 > 0$ and $0 < \beta_2 < 1$ depending on α_s .

Exponential tail of hitting times II

A more precise bound:

Theorem

Let (X_t) be a finite, irreducible Markov chain with state space V and initial distribution μ . For $A \subseteq V$, let $\overline{t}_A := \max_x \mathbb{E}_x[\tau_A]$. Then

$$\mathbb{P}_{\mu}[\tau_{\mathcal{A}} > t] \leq \exp\left(-\left\lfloor \frac{t}{\lceil e \overline{\mathfrak{t}}_{\mathcal{A}} \rceil} \right\rfloor\right).$$

Proof: For any integer *m*, for some distribution θ ,

$$\mathbb{P}_{\mu}[\tau_{A} > ms \,|\, \tau_{A} > (m-1)s] = \mathbb{P}_{\theta}[\tau_{A} > s] \leq \max_{x} \mathbb{P}_{x}[\tau_{A} > s] \leq \frac{\overline{\mathfrak{t}}_{A}}{s},$$

by the Markov property and Markov's inequality. By induction, $\mathbb{P}_{\mu}[\tau_{A} > ms] \leq \left(\frac{\overline{t}_{A}}{s}\right)^{m}$ or $\mathbb{P}_{\mu}[\tau_{A} > t] \leq \left(\frac{\overline{t}_{A}}{s}\right)^{\lfloor \frac{t}{s} \rfloor}$. By differentiating w.r.t. *s*, it can be checked that a good choice is $s = \lceil e \overline{t}_{A} \rceil$.

Definitions and examples Some useful results Application: Hitting times and cover times

ヘロン ヘ週ン ヘヨン ヘヨン

Application to cover times

Let (X_t) be a finite, irreducible Markov chain on V with n := |V| > 1. Recall that the cover time is $\tau_{cov} := \max_y \tau_y$. We bound the mean cover time in terms of $\overline{t}_{hit} := \max_{x,y} \mathbb{E}_x \tau_y$.

Theorem

$$\max_{x} \mathbb{E}_{x} \tau_{\text{cov}} \leq (3 + \ln n) \lceil e \bar{t}_{\text{hit}} \rceil$$

Proof: By a union bound over all states to be visited and our previous tail bound,

$$\max_{x} \mathbb{P}_{x}[\tau_{\text{cov}} > t] \le \min\left\{1, n \cdot \exp\left(-\left\lfloor\frac{t}{\left\lceil e \,\overline{t}_{\text{hit}} \right\rceil}\right\rfloor\right)\right\}$$

Summing over *t* and appealing to the sum of a geometric series,

$$\max_{x} \mathbb{E}_{x} \tau_{\text{cov}} \leq (\ln(n) + 1) \lceil e \overline{t}_{\text{hit}} \rceil + \frac{1}{1 - e^{-1}} \lceil e \overline{t}_{\text{hit}} \rceil.$$

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: Hitting times and cover times

Matthews' cover time bounds

Let
$$\underline{t}_{hit}^{\mathcal{A}} := \min_{x,y \in \mathcal{A}, x \neq y} \mathbb{E}_{x} \tau_{y}$$
 and $h_{n} := \sum_{m=1}^{n} \frac{1}{m}$.

Theorem

$$\max_{x} \mathbb{E}_{x} \tau_{\text{cov}} \leq h_{n} \overline{\mathfrak{t}}_{\text{hit}} \qquad \min_{x} \mathbb{E}_{x} \tau_{\text{cov}} \geq \max_{A \subseteq V} h_{|A|-1} \underline{\mathfrak{t}}_{\text{hit}}^{A}$$

Proof: We prove the lower bound for A = V. The other cases are similar. Let (J_1, \ldots, J_n) be a uniform random ordering of V, let $C_m := \max_{i \le J_m} \tau_i$, and let L_m be the last state visited among J_1, \ldots, J_m . Then

$$\mathbb{E}[C_m - C_{m-1} \mid J_1, \ldots, J_m, \{X_t, t \leq C_{m-1}\}] = \mathbb{E}_{L_{m-1}}[\tau_{J_m}] \mathbb{1}_{\{L_m = J_m\}} \geq \underline{t}_{hit}^V \mathbb{1}_{\{L_m = J_m\}}.$$

By symmetry, $\mathbb{P}[L_m = J_m] = \frac{1}{m}$. Moreover $\mathbb{E}_x C_1 \ge (1 - \frac{1}{n}) t_{\text{bhit}}^V$. Taking expectations above and summing over *m* gives the result. Better lower bounds can be obtained by applying this technique to subsets of *V*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

ъ

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: critical percolation on

1 Conditioning

2 Stopping times

- Definitions and examples
- Some useful results
- Application: Hitting times and cover times

3 Martingales

- Definitions and examples
- Some useful results
- Application: critical percolation on trees

イロト イポト イヨト イヨト

Definitions and examples Some useful results Application: critical percolation on trees

Martingales I

Definition

An adapted process $\{M_t\}_{t\geq 0}$ with $\mathbb{E}|M_t| < +\infty$ for all *t* is a *martingale* if

$$\mathbb{E}[M_{t+1} \mid \mathcal{F}_t] = M_t, \qquad \forall t \ge 0$$

If the equality is replaced with \leq or \geq , we get a supermartingale or a submartingale respectively. We say that a martingale in *bounded in* L^{p} if $\sup_{n} \mathbb{E}[|X_{n}|^{p}] < +\infty$.

Example (Sums of i.i.d. random variables with mean 0)

Let X_0, X_1, \ldots be i.i.d. centered random variables, $\mathcal{F}_t = \sigma(X_0, \ldots, X_t)$ and $S_t = \sum_{i \leq t} X_i$. Note that $\mathbb{E}|S_t| < \infty$ by the triangle inequality and

 $\mathbb{E}[S_t | \mathcal{F}_{t-1}] = \mathbb{E}[S_{t-1} + X_t | \mathcal{F}_{t-1}] = S_{t-1} + \mathbb{E}[X_t] = S_{t-1}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Definitions and examples Some useful results Application: critical percolation on trees

Martingales II

Example (Variance of a sum)

Same setup as previous example with $\sigma^2 := \operatorname{Var}[X_1] < \infty$. Define $M_t = S_t^2 - t\sigma^2$. Note that $\mathbb{E}|M_t| \le 2t\sigma^2 < +\infty$ and

$$\begin{split} \mathbb{E}[M_t \,|\, \mathcal{F}_{t-1}] &= \mathbb{E}[(X_t + S_{t-1})^2 - t\sigma^2 \,|\, \mathcal{F}_{t-1}] \\ &= \mathbb{E}[X_t^2 + 2X_t S_{t-1} + S_{t-1}^2 - t\sigma^2 \,|\, \mathcal{F}_{t-1}] \\ &= \sigma^2 + 0 + S_{t-1}^2 - t\sigma^2 = M_{t-1}. \end{split}$$

Example (Accumulating data: Doob's martingale)

Let X with $\mathbb{E}|X| < +\infty$. Define $M_t = \mathbb{E}[X | \mathcal{F}_t]$. Note that $\mathbb{E}|M_t| \leq \mathbb{E}|X| < +\infty$, and $\mathbb{E}[M_t | \mathcal{F}_{t-1}] = \mathbb{E}[X | \mathcal{F}_{t-1}] = M_{t-1}$, by the tower property.

ヘロト ヘワト ヘビト ヘビト

э

Definitions and examples Some useful results Application: critical percolation on trees

Convergence theorem I

Theorem (Martingale convergence theorem)

Let (X_t) be a supermartingale bounded in L^1 . Then (X_t) converges a.s. to a finite limit X_{∞} . Moreover, $\mathbb{E}|X_{\infty}| < +\infty$.

Corollary

If (X_t) is a nonnegative martingale then X_t converges a.s.

Proof: (X_t) is bounded in L^1 since

$$\mathbb{E}|X_t| = \mathbb{E}[X_t] = \mathbb{E}[X_0], \ \forall t.$$

イロト イポト イヨト イヨト

Definitions and examples Some useful results Application: critical percolation on trees

イロト イポト イヨト イヨト

Convergence theorem II

Example (Polya's Urn)

An urn contains 1 red ball and 1 green ball. At each time, we pick one ball and put it back with an extra ball of the same color. Let R_t (resp. G_t) be the number of red balls (resp. green balls) after the *t*th draw. Let $\mathcal{F}_t = \sigma(R_0, G_0, R_1, G_1, \dots, R_t, G_t)$. Define M_t to be the fraction of green balls. Then

$$\mathbb{E}[M_t \mid \mathcal{F}_{t-1}] = \frac{R_{t-1}}{G_{t-1} + R_{t-1}} \frac{G_{t-1}}{G_{t-1} + R_{t-1} + 1} \\ + \frac{G_{t-1}}{G_{t-1} + R_{t-1}} \frac{G_{t-1} + 1}{G_{t-1} + R_{t-1} + 1} \\ = \frac{G_{t-1}}{G_{t-1} + R_{t-1}} = M_{t-1}.$$

Since $M_t \ge 0$ and is a martingale, we have $M_t \to M_\infty$ a.s.

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: critical percolation on t

Maximal inequality I

Theorem (Doob's submartingale inequality)

Let (M_t) be a nonnegative submartingale. Then for b > 0

$$\mathbb{P}\left[\sup_{1\leq i\leq t}M_t\geq b\right]\leq \frac{\mathbb{E}[M_t]}{b}.$$

(Markov's inequality implies only $\sup_{1 \le i \le t} \mathbb{P}[M_i \ge b] \le \frac{\mathbb{E}[M_t]}{b}$.) *Proof:* Divide $F = \{\sup_{1 \le i \le t} M_t \ge b\}$ according to the first time M_i crosses b: $F = F_0 \cup \cdots \cup F_t$, where

$$F_i = \{M_0 < b\} \cap \cdots \cap \{M_{i-1} < b\} \cap \{M_i \ge b\}.$$

Since $F_i \in \mathcal{F}_i$ and $\mathbb{E}[M_t | \mathcal{F}_i] \geq M_i$,

$$b \mathbb{P}[F_i] \leq \mathbb{E}[M_i; F_i] \leq \mathbb{E}[M_t; F_i].$$

Sum over i.

・ロン ・雪 と ・ ヨ と

500

Definitions and examples Some useful results Application: critical percolation on trees

Maximal inequality II

A useful consequence:

Corollary (Kolmogorov's inequality)

Let $X_1, X_2, ...$ be independent random variables with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}[X_i] < +\infty$. Define $S_t = \sum_{i < t} X_i$. Then for $\beta > 0$

$$\mathbb{P}\left[\max_{i\leq t}|S_i|\geq \beta\right]\leq \frac{\operatorname{Var}[S_t]}{\beta^2}.$$

Proof: (S_t) is a martingale. By Jensen's inequality, (S_t^2) is a submartingale. The result follows Doob's submartingale inequality.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Definitions and examples Some useful results Application: critical percolation on trees

Orthogonality of increments

Lemma (Orthogonality of increments)

Let (M_t) be a martingale with $M_t \in L^2$. Let $s \le t \le u \le v$. Then,

$$\langle M_t - M_s, M_v - M_u \rangle = 0.$$

Proof: Use $M_u = \mathbb{E}[M_v | \mathcal{F}_u]$, $M_t - M_s \in \mathcal{F}_u$ and apply the L^2 characterization of conditional expectations.

イロト イポト イヨト イヨト

э.

Definitions and examples Some useful results Application: critical percolation on trees

Optional stopping theorem I

Definition

Let $\{M_t\}$ be an adapted process and σ be a stopping time. Then

$$M^{\sigma}_t(\omega) := M_{\sigma(\omega) \wedge t}(\omega),$$

is (M_t) stopped at σ .

Theorem

Let (M_t) be a supermartingale and σ be a stopping time. Then the stopped process (M_t^{σ}) is a supermartingale and in particular

 $\mathbb{E}[M_{\sigma\wedge t}] \leq \mathbb{E}[M_0].$

The same result holds with equality if (M_t) is a martingale.

Definitions and examples Some useful results Application: critical percolation on trees

Optional stopping theorem II

Theorem

Let (M_t) be a supermartingale and σ be a stopping time. Then M_{σ} is integrable and

$\mathbb{E}[M_{\sigma}] \leq \mathbb{E}[M_0].$

if one of the following holds:

- σ is bounded
- **2** (M_t) is uniformly bounded and σ is a.s. finite
- $\mathbb{E}[\sigma] < +\infty$ and (M_t) has bounded increments (i.e., there c > 0 such that $|M_t M_{t-1}| \le c$ a.s. for all t)
- (M_t) is nonnegative and σ is a.s. finite.

The first three imply equality above if (M_t) is a martingale.

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: critical percolation on tree

Wald's identities

For
$$X_1, X_2, \ldots \in \mathbb{R}$$
, let $S_t = \sum_{i=1}^t X_i$.

Theorem (Wald's first identity)

Let $X_1, X_2, \ldots \in L^1$ be i.i.d. with $\mathbb{E}[X_1] = \mu$ and let $\tau \in L^1$ be a stopping time. Then

$$\mathbb{E}[S_{\tau}] = \mathbb{E}[X_1]\mathbb{E}[\tau].$$

Theorem (Wald's second identity)

Let $X_1, X_2, \ldots \in L^2$ be i.i.d. with $\mathbb{E}[X_1] = 0$ and $\operatorname{Var}[X_1] = \sigma^2$ and let $\tau \in L^1$ be a stopping time. Then

$$\mathbb{E}[S_{\tau}^2] = \sigma^2 \mathbb{E}[\tau].$$

ヘロト 人間 ト ヘヨト ヘヨト

3

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: critical percolation on tre

Gambler's ruin I

Example (Gambler's ruin: unbiased case)

Let (*S*_t) be simple random walk on \mathbb{Z} started at 0 and let $\tau = \tau_a \wedge \tau_b$ where a < 0 < b. We claim that 1) $\tau < +\infty$ a.s., 2) $\mathbb{P}[\tau_a < \tau_b] = \frac{b}{b-a}$, 3) $\mathbb{E}[\tau] = -ab$, and 4) $\tau_a < +\infty$ a.s. but $\mathbb{E}[\tau_a] = +\infty$.

We first argue that Eτ < ∞. Since (b − a) steps to the right necessarily take us out of (a, b),

$$\mathbb{P}[\tau > t(b-a)] \leq (1-2^{-(b-a)})^t,$$

by independence of the (b - a)-long stretches, so that

$$\mathbb{E}[\tau] = \sum_{k \ge 0} \mathbb{P}[\tau > k] \le \sum_t (b-a)(1-2^{-(b-a)})^t < +\infty,$$

by monotonicity. In particular $\tau < +\infty$ a.s.

ヘロン ヘアン ヘビン ヘビン

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: critical percolation on trees

Gambler's ruin II

2) By Wald's first identity, $\mathbb{E}[S_{\tau}] = 0$ or

$$a \mathbb{P}[S_{\tau} = a] + b \mathbb{P}[S_{\tau} = b] = 0,$$

that is (taking $b
ightarrow \infty$ in the second expression)

$$\mathbb{P}[\tau_a < \tau_b] = rac{b}{b-a} \quad ext{and} \quad \mathbb{P}[\tau_a < \infty] \geq \mathbb{P}[\tau_a < \tau_b] o 1.$$

3) Wald's second identity says that $\mathbb{E}[S_{\tau}^2] = \mathbb{E}[\tau]$ (by $\sigma^2 = 1$). Also

$$\mathbb{E}[S_{\tau}^2] = \frac{b}{b-a}a^2 + \frac{-a}{b-a}b^2 = -ab,$$

so that $\mathbb{E}\tau = -ab$.

 Taking b → +∞ above shows that E[τ_a] = +∞ by monotone convergence. (Note that this case shows that the L¹ condition on the stopping time is necessary in Wald's second identity.)

・ロト ・ 理 ト ・ ヨ ト ・

3

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: critical percolation on tre

Gambler's ruin III

Example (Gambler's ruin: biased case)

The biased simple random walk on \mathbb{Z} with parameter $1/2 is the process <math>\{S_t\}_{t\geq 0}$ with $S_0 = 0$ and $S_t = \sum_{i\leq t} X_i$ where the X_i s are i.i.d. in $\{-1, +1\}$ with $\mathbb{P}[X_1 = 1] = p$. Let $\tau = \tau_a \wedge \tau_b$ where a < 0 < b. Let q := 1 - p and $\phi(x) := (q/p)^x$. We claim that 1) $\tau < +\infty$ a.s., 2) $\mathbb{P}[\tau_a < \tau_b] = \frac{\phi(b) - \phi(0)}{\phi(b) - \phi(a)}$, 3) $\mathbb{E}[\tau_b] = \frac{b}{2p-1}$, and 4) $\tau_a = +\infty$ with positive probability.

Let $\psi_t(x) := x - (p - q)t$. We use two martingales:

$$\mathbb{E}[\phi(S_t) | \mathcal{F}_{t-1}] = \rho(q/\rho)^{S_{t-1}+1} + q(q/\rho)^{S_{t-1}-1} = \phi(S_{t-1}),$$

and

$$\mathbb{E}[\psi_t(S_t) | \mathcal{F}_{t-1}] = \rho[S_{t-1} + 1 - (\rho - q)t] + q[S_{t-1} - 1 - (\rho - q)t] \\ = \psi_{t-1}(S_{t-1}).$$

Claim 1) follows by the same argument as in the unbiased case.

 Conditioning
 Definitions and examples

 Stopping times
 Some useful results

 Martingales
 Application: critical percolation on tre

Gambler's ruin IV

2) Now note that $(\phi(S_{\tau \wedge t}))$ is a bounded martingale and, therefore, by applying the martingale property at time *t* and taking limits as $t \to \infty$ (using dominated convergence) we get

$$\phi(\mathbf{0}) = \mathbb{E}[\phi(S_{\tau})] = \mathbb{P}[\tau_a < \tau_b]\phi(a) + \mathbb{P}[\tau_a > \tau_b]\phi(b),$$

or $\mathbb{P}[\tau_a < \tau_b] = \frac{\phi(b) - \phi(0)}{\phi(b) - \phi(a)}$. Taking $b \to +\infty$, by monotonicity $\mathbb{P}[\tau_a < +\infty] = \frac{1}{\phi(a)} < 1$ so $\tau_a = +\infty$ with positive probability.

3) By the martingale property

$$0 = \mathbb{E}[S_{\tau_b \wedge t} - (\rho - q)(\tau_b \wedge t)].$$

By monotone convergence, $\mathbb{E}[\tau_b \wedge t] \uparrow \mathbb{E}[\tau_b]$. Finally, $-\inf_t S_t \ge 0$ a.s. and for $x \ge 0$,

$$\mathbb{P}[-\inf_t S_t \ge x] = \mathbb{P}[\tau_{-x} < +\infty] = \left(\frac{q}{\rho}\right)^x,$$

so that $\mathbb{E}[-\inf_t S_t] = \sum_{x \ge 1} \mathbb{P}[-\inf_t S_t \ge x] < +\infty$. Hence, we can use dominated convergence with $|S_{\tau_b \land t}| \le \max\{b, -\inf_t S_t\}$ to deduce that $\mathbb{E}[\tau_b] = \frac{\mathbb{E}[S_{\tau_b}]}{\rho - q} = \frac{b}{2\rho - 1}$.

Definitions and examples Some useful results Application: critical percolation on trees

Critical percolation on \mathbb{T}_d

Consider bond percolation on \mathbb{T}_d with density $p = \frac{1}{d-1}$. Let $X_n := |\partial_n \cap C_0|$, where ∂_n are the *n*-th level vertices and C_0 is the open cluster of the root. The first moment method does not work in this case because $\mathbb{E}X_n = d(d-1)^{n-1}p^n = \frac{d}{d-1} \neq 0$.

Theorem

 $|\mathcal{C}_0| < +\infty$ a.s.

Proof: Let b := d - 1 be the branching ratio. Let Z_n be the number of vertices in the open cluster of the first child of the root *n* levels below it and let $\mathcal{F}_n = \sigma(Z_0, ..., Z_n)$. Then $Z_0 = 1$ and $\mathbb{E}[Z_n | \mathcal{F}_{n-1}] = bpZ_{n-1} = Z_{n-1}$. So (Z_n) is a nonnegative, integer-valued martingale and it converges to an a.s. finite limit. But, clearly, for any integer k > 0 and $N \ge 0$

$$\mathbb{P}[Z_n=k, \ \forall n\geq N]=0,$$

so $Z_{\infty}\equiv 0.$

Critical percolation on \mathbb{T}_d : a tail estimate I

We give a more precise result that will be useful later. Consider the descendant subtree, T_1 , of the first child, 1, of the root. Let \tilde{C}_1 be the open cluster of 1 in T_1 . Assume $d \ge 3$.

Theorem

$$\mathbb{P}\left[\left|\widetilde{\mathcal{C}}_{1}\right| > k
ight] \leq rac{4\sqrt{2}}{\sqrt{k}}$$
, for k large enough

Proof: Note first that $\mathbb{E}|\widetilde{C}_1| = +\infty$ by summing over the levels. So we cannot use the first moment method directly to give a bound on the tail. Instead, we use Markov's inequality on a stopped process. We use an exploration process with 3 types of vertices:

- A_t: active vertices
- *E_t*: *explored* vertices
- N_t: neutral vertices

We start with $\mathcal{A}_0 := \{1\}, \mathcal{E}_0 := \emptyset$, and \mathcal{N}_0 contains all other vertices in \mathcal{I}_1 .

Critical percolation on \mathbb{T}_d : a tail estimate II

Proof (continued): At time *t*, if $A_{t-1} = \emptyset$ we let $(A_t, \mathcal{E}_t, \mathcal{N}_t)$ be

 $(A_{t-1}, \mathcal{E}_{t-1}, \mathcal{N}_{t-1})$. Otherwise, we pick a random element, a_t , from A_{t-1} and:

•
$$\mathcal{A}_t := \mathcal{A}_{t-1} \cup \{x \in \mathcal{N}_{t-1} : \{x, a_t\} \text{ is open}\} \setminus \{a_t\}$$

•
$$\mathcal{E}_t := \mathcal{E}_{t-1} \cup \{\mathbf{a}_t\}$$

$$\mathcal{N}_t := \mathcal{N}_{t-1} \setminus \{x \in \mathcal{N}_{t-1} : \{x, a_t\} \text{ is open}\}$$

Let $M_t := |\mathcal{A}_t|$. Revealing the edges as they are explored and letting (\mathcal{F}_t) be the corresponding filtration, we have $\mathbb{E}[M_t | \mathcal{F}_{t-1}] = M_{t-1} + bp - 1 = M_{t-1}$ on $\{M_{t-1} > 0\}$ so (M_t) is a nonnegative martingale. Let $\sigma^2 := bp(1-p) \ge \frac{1}{2}$, $\tau := \inf\{t \ge 0 : M_t = 0\}$, and $Y_t := M_{t \land \tau}^2 - \sigma^2(t \land \tau)$. Then, on $\{M_{t-1} > 0\}$,

$$\mathbb{E}[Y_t | \mathcal{F}_{t-1}] = \mathbb{E}[(M_{t-1} + (M_t - M_{t-1}))^2 - \sigma^2 t | \mathcal{F}_{t-1}] \\ = \mathbb{E}[M_{t-1}^2 + 2M_{t-1}(M_t - M_{t-1}) + (M_t - M_{t-1})^2 - \sigma^2 t | \mathcal{F}_{t-1}] \\ = M_{t-1}^2 + 2M_{t-1} \cdot 0 + \sigma^2 - \sigma^2 t = Y_{t-1},$$

so (Y_t) is also a martingale. For h > 0, let

$$au'_h := \inf\{t \ge 0 : M_t = 0 \text{ or } M_t \ge h\}.$$

くロト (過) (目) (日)

Critical percolation on \mathbb{T}_d : a tail estimate III

Proof (continued): Note that $\tau'_h \leq \tau = |\widetilde{C}_1| < +\infty$ a.s. We use

$$\mathbb{P}[\tau > k] = \mathbb{P}[M_t > 0, \forall t \in [k]] \le \mathbb{P}[\tau'_h > k] + \mathbb{P}[M_{\tau'_h} \ge h].$$

By Markov's inequality, $\mathbb{P}[M_{\tau'_h} \ge h] \le \frac{\mathbb{E}[M_{\tau'_h}]}{h}$ and $\mathbb{P}[\tau'_h > k] \le \frac{\mathbb{E}\tau'_h}{k}$. To compute $\mathbb{E}M_{\tau'_h}$, we use the optional stopping theorem

$$1 = \mathbb{E}[M_{\tau'_h \wedge s}] \to \mathbb{E}[M_{\tau'_h}],$$

as $s \to +\infty$ by bounded convergence $(|M_{\tau'_h \land s}| \le h + b)$. To compute $\mathbb{E}\tau'_h$, we use the optional stopping theorem again

$$1 = \mathbb{E}[M^2_{\tau'_h \land s} - \sigma^2(\tau'_h \land s)] = \mathbb{E}[M^2_{\tau'_h \land s}] - \sigma^2 \mathbb{E}[\tau'_h \land s] \to \mathbb{E}[M^2_{\tau'_h}] - \sigma^2 \mathbb{E}\tau'_h,$$

as $s \to +\infty$ by bounded convergence again and monotone convergence $(\tau'_h \wedge s \uparrow \tau'_h)$ respectively.

イロト 不得 とくほと くほとう

Critical percolation on \mathbb{T}_d : a tail estimate IV

Proof (continued): Because

$$\mathbb{E}[M_{\tau_h'}^2 \mid M_{\tau_h'} \geq h] \leq (h+b)^2,$$

we have

$$\mathbb{E}\tau_h' \leq \frac{1}{\sigma^2} \left\{ \frac{1}{h} \mathbb{E}[M_{\tau_h'}^2 \mid M_{\tau_h'} \geq h] \right\} \leq \frac{(h+b)^2}{\sigma^2 h} \leq \frac{2(h+b)^2}{h}.$$

Take $h := \sqrt{\frac{k}{8}}$. For k large enough, $h \geq b$ and
 $\mathbb{P}[\tau > k] \leq \mathbb{P}[\tau_h' > k] + \mathbb{P}[M_{\tau_h'} \geq h] \leq \frac{8h}{k} + \frac{1}{h} = 2\sqrt{\frac{8}{k}}.$

イロト 不得 とくほ とくほとう

3