Modern Discrete Probability

IV - Coupling Review

Sebastien Roch ´ *UW–Madison Mathematics*

October 27, 2014

Sébastien Roch, UW–Madison [Modern Discrete Probability – Coupling](#page-29-0)

イロト イ押 トイヨ トイヨ トー

÷.

Application: Erdös-Rényi degree sequence [Application: Harmonic functions on lattices and trees](#page-22-0) [Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

[Basics](#page-1-0)

- [Definitions and examples](#page-2-0)
- [Coupling inequality](#page-6-0)

Application: Erdös-Rényi degree sequence

[Application: Harmonic functions on lattices and trees](#page-22-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト

B

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Application: Erdös-Rénvi degree sequence [Application: Harmonic functions on lattices and trees](#page-22-0)

Basic definitions

Definition (Coupling)

Let μ and ν be probability measures on the same measurable space (*S*, *S*). A *coupling* of μ and ν is a probability measure γ on the product space $(S \times S, S \times S)$ such that the *marginals* of γ coincide with μ and ν , i.e.,

$$
\gamma(A \times S) = \mu(A) \quad \text{and} \quad \gamma(S \times A) = \nu(A), \qquad \forall A \in S.
$$

Similarly, for two random variables *X* and *Y* taking values in (S, S) , a *coupling* of X and Y is a joint variable (X', Y') taking values in $(S \times S, S \times S)$ whose law is a coupling of the laws of *X* and *Y*. Note that *X* and *Y* need not be defined on the same probability space—but X' and Y' do need to.

K ロ ト K 何 ト K ヨ ト K ヨ ト

 290

ă.

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Examples I

Example (Bernoulli variables)

Let *X* and *Y* be Bernoulli random variables with parameters $0 \le q \le r \le 1$ respectively. That is, $\mathbb{P}[X = 0] = 1 - q$ and $\mathbb{P}[X = 1] = q$, and similarly for *Y*. Here $S = \{0, 1\}$ and $S = 2^S$.

- *(Independent coupling)* One coupling of X and Y is (X', Y') where $X' \stackrel{d}{=} X$ and $Y' \stackrel{d}{=} Y$ are *independent*. Its law is

$$
\left(\mathbb{P}[(X',Y')=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix}(1-q)(1-r) & (1-q)r\\q(1-r) & qr\end{pmatrix}.
$$

(Monotone coupling) Another possibility is to pick *U* uniformly at random in [0, 1], and set $X'' = \mathbb{1}_{\{U \le q\}}$ and $Y'' = \mathbb{1}_{\{U \le r\}}$. The law of coupling (X'', Y'') is

$$
\left(\mathbb{P}[(X'',Y'')=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix}1-r&r-q\\0&q\end{pmatrix}
$$

.

E

 $2Q$

K ロ ト K 何 ト K ヨ ト K ヨ ト

Examples II

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Example (Bond percolation: monotonicity)

Let $G = (V, E)$ be a countable graph. Denote by \mathbb{P}_{p} the law of bond percolation on *G* with density *p*. Let $x \in V$ and assume $0 \le q \le r \le 1$.

- Let {*Ue*}*e*∈*^E* be independent uniforms on [0, 1].
- For $p \in [0, 1]$, let W_p be the set of edges *e* such that $U_e \leq p$.

Thinking of *W^p* as specifying the open edges in the percolation process on *G* under \mathbb{P}_p , we see that (W_q, W_r) is a coupling of \mathbb{P}_q and \mathbb{P}_r with the property that $\mathbb{P}[W_q \subseteq W_r] = 1.$ Let $\mathcal{C}_{\mathsf{x}}^{(q)}$ and $\mathcal{C}_{\mathsf{x}}^{(r)}$ be the open clusters of x under W_q and W_r respectively. Because $C^{(q)}_x \subseteq C^{(r)}_x$,

$$
\theta(q):=\mathbb{P}_q[|\mathcal{C}_x| = +\infty] = \mathbb{P}[|\mathcal{C}_x^{(q)}| = +\infty] \leq \mathbb{P}[|\mathcal{C}_x^{(r)}| = +\infty] = \theta(r).
$$

イロト イ団 トイヨ トイヨ トー

÷.

Application: Erdös-Rényi degree sequence [Application: Harmonic functions on lattices and trees](#page-22-0) [Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Examples III

Example (Biased random walks on $\mathbb Z$)

For $p\in[0,1]$, let $(S_n^{(p)})$ $\mathcal{P}_n^{(p)}$) be nearest-neighbor random walk on $\mathbb Z$ started at 0 with probability *p* of jumping to the right and probability 1 – *p* of jumping to the left. Assume $0 \le q \le r \le 1$.

 \cdot Let $(X_i'', Y_i'')_i$ be an infinite sequence of i.i.d. monotone Bernoulli couplings with parameters *q* and *r* respectively.

- Define
$$
(Z_i^{(q)}, Z_i^{(r)}) := (2X_i'' - 1, 2Y_i'' - 1)
$$
.

- Let
$$
\hat{S}_n^{(q)} = \sum_{i \le n} Z_i^{(q)}
$$
 and $\hat{S}_n^{(r)} = \sum_{i \le n} Z_i^{(r)}$.

Then $(\hat{S}^{(q)}_n, \hat{S}^{(r)}_n)$ is a coupling of $(S^{(q)}_n)$ $S_n^{(q)}, S_n^{(r)}$ *n*) such that $\hat{S}^{(q)}_n \leq \hat{S}^{(r)}_n$ for all *n* almost surely. So for all *y* and all *n*

$$
\mathbb{P}[S_n^{(q)} \leq y] = \mathbb{P}[\hat{S}_n^{(q)} \leq y] \geq \mathbb{P}[\hat{S}_n^{(r)} \leq y] = \mathbb{P}[S_n^{(r)} \leq y].
$$

 α α

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Coupling inequality I

Let μ and ν be probability measures on (S, \mathcal{S}) . Recall the definition of total variation distance:

$$
\|\mu-\nu\|_{\mathrm{TV}} := \sup_{A \in \mathcal{S}} |\mu(A)-\nu(A)|.
$$

Lemma

Let µ *and* ν *be probability measures on* (*S*, S)*. For any coupling* (X, Y) *of* μ *and* ν ,

$$
\|\mu-\nu\|_{TV}\leq \mathbb{P}[X\neq Y].
$$

イロト イ押 トイヨ トイヨト

B

Application: Erdös-Rényi degree sequence [Application: Harmonic functions on lattices and trees](#page-22-0) [Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Coupling inequality II

Proof:

$$
\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]
$$

= $\mathbb{P}[X \in A, X = Y] + \mathbb{P}[X \in A, X \neq Y]$
 $- \mathbb{P}[Y \in A, X = Y] - \mathbb{P}[Y \in A, X \neq Y]$
= $\mathbb{P}[X \in A, X \neq Y] - \mathbb{P}[Y \in A, X \neq Y]$
 $\leq \mathbb{P}[X \neq Y],$

and, similarly, $\nu(A) - \mu(A) \leq \mathbb{P}[X \neq Y]$. Hence

$$
|\mu(A)-\nu(A)|\leq \mathbb{P}[X\neq Y].
$$

a s

÷.

 2990

イロト イ押 トイヨ トイヨ トー

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Maximal coupling I

In fact, the inequality is tight. For simplicity, we prove this in the finite case only.

Lemma

Assume S is finite and let $\mathcal{S}=2^{\mathcal{S}}.$ Let μ and ν be probability *measures on* (*S*, S)*. Then,*

 $\|\mu - \nu\|_{TV} = \inf{\{\mathbb{P}[X \neq Y] : coupling(X, Y) \text{ of } \mu \text{ and } \nu\}}.$

Let $A = \{x \in S : \mu(x) > \nu(x)\}, B = \{x \in S : \mu(x) \leq \nu(x)\}\$ and

$$
\rho := \sum_{x \in S} \mu(x) \wedge \nu(x), \quad \alpha := \sum_{x \in A} [\mu(x) - \nu(x)], \quad \beta := \sum_{x \in B} [\nu(x) - \mu(x)].
$$

モニー・モン イミン イヨン エミ

Application: Erdös-Rényi degree sequence [Application: Harmonic functions on lattices and trees](#page-22-0) [Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Maximal coupling II

Figure : Proof by picture that: $1 - p = \alpha = \beta = ||\mu - \nu||_{TV}$.

 $(1 - 4)$ $(1 -$

÷.

Application: Erdös-Rényi degree sequence [Application: Harmonic functions on lattices and trees](#page-22-0) [Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Maximal coupling III

Proof: Lemma: $\sum_{x \in S} \mu(x) \wedge \nu(x) = 1 - ||\mu - \nu||_{TV}$. *Proof of lemma:*

$$
2\|\mu - \nu\|_{\text{TV}} = \sum_{x \in S} |\mu(x) - \nu(x)|
$$

= $\sum_{x \in A} [\mu(x) - \nu(x)] + \sum_{x \in B} [\nu(x) - \mu(x)]$
= $\sum_{x \in A} \mu(x) + \sum_{x \in B} \nu(x) - \sum_{x \in S} \mu(x) \wedge \nu(x)$
= $2 - \sum_{x \in B} \mu(x) - \sum_{x \in A} \nu(x) - \sum_{x \in S} \mu(x) \wedge \nu(x)$
= $2 - 2 \sum_{x \in S} \mu(x) \wedge \nu(x).$

Lemma: $\sum_{x \in A} [\mu(x) - \nu(x)] = \sum_{x \in B} [\nu(x) - \mu(x)] = ||\mu - \nu||_{TV} = 1 - p$. *Proof:* First equality is immediate. Second equality follows from second line in previous lemma. イロト 不優 トイモト イモト 一番

Application: Erdös-Rénvi degree sequence [Application: Harmonic functions on lattices and trees](#page-22-0) [Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Maximal coupling IV

The maximal coupling is defined as follows:

- With probability p , pick $X = Y$ from γ_{min} where $\gamma_{\text{min}}(x) := \frac{1}{p}\mu(x) \wedge \nu(x)$, *x* ∈ *S*.
- $-$ Otherwise, pick *X* from $γ_A$ where $γ_A(x) := \frac{μ(x) ν(x)}{1-p}$, $x ∈ A$, and, independently, pick *Y* from $\gamma_B(x) := \frac{\nu(x) - \mu(x)}{1 - p}$, $x \in B$. Note that $X \neq Y$ in that case because *A* and *B* are disjoint.

The marginal law of X at $x \in S$ is

$$
p\gamma_{\min}(x)+(1-p)\gamma_A(x)=\mu(x),
$$

and similarly for *Y*. Finally $\mathbb{P}[X \neq Y] = 1 - p = ||\mu - \nu||_{TV}$.

イロト イ押 トイヨ トイヨ トー

÷. QQ

Application: Erdös-Rényi degree sequence [Application: Harmonic functions on lattices and trees](#page-22-0)

Example

Example (Bernoulli variables, continued)

Let *X* and *Y* be Bernoulli random variables with parameters $0 \le q < r \le 1$ respectively. That is, $\mathbb{P}[X = 0] = 1 - q$ and $\mathbb{P}[X = 1] = q$, and similarly for *Y*. Here $S = \{0,1\}$ and $S = 2^S$. Let μ and ν be the laws of X and Y respectively. To construct the maximal coupling as above, we note that

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

$$
p := \sum_{x} \mu(x) \wedge \nu(x) = (1 - r) + q, \qquad 1 - p = \alpha = \beta := r - q,
$$

$$
A := \{0\}, \qquad B := \{1\},
$$

$$
(\gamma_{\min}(x))_{x=0,1} = \left(\frac{1-r}{(1-r)+q}, \frac{q}{(1-r)+q}\right), \qquad \gamma_A(0) := 1, \qquad \gamma_B(1) := 1.
$$

The law of the maximal coupling (X''', Y''') is

$$
\left(\mathbb{P}[(X''',Y''')=(i,j)]\right)_{i,j\in\{0,1\}}=\begin{pmatrix}1-r&r-q\\0&q\end{pmatrix},
$$

which coincides with the monotone coupling.

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Poisson approximation I

Let X_1, \ldots, X_n be independent Bernoulli random variables with parameters p_1, \ldots, p_n respectively. We are interested in the case where the p_i s are "small." Let $\mathcal{S}_n := \sum_{i \leq n} \mathcal{X}_i$.

We approximate *Sⁿ* with a Poisson random variable *Zⁿ* as follows: let W_1, \ldots, W_n be independent Poisson random variables with means $\lambda_1, \ldots, \lambda_n$ respectively and define $\mathcal{Z}_n := \sum_{i \leq n} W_i.$ We choose $\lambda_i = -\log(1 - p_i)$ so as to ensure

$$
(1 - p_i) = \mathbb{P}[X_i = 0] = \mathbb{P}[W_i = 0] = e^{-\lambda_i}.
$$

Note that $Z_n \sim \operatorname{Poi}(\lambda)$ where $\lambda = \sum_{i \leq n} \lambda_i.$

イロト イ押 トイヨ トイヨ トー

ă.

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Poisson approximation II

Theorem

$$
\|\mu_{S_n}-\mu_{Z_n}\|_{\mathrm{TV}}\leq \frac{1}{2}\sum_{i\leq n}\lambda_i^2.
$$

Proof: We couple the pairs (X_i, W_i) independently for $i \leq n$. Let

$$
W'_i \sim \mathrm{Poi}(\lambda_i) \quad \text{and} \quad X'_i = W'_i \wedge 1.
$$

Because $\lambda_i = -\log(1-p_i), (X'_i, W'_i)$ is a coupling of (X_i, W_i) . Let $\mathcal{S}'_n:=\sum_{i\le n}X'_i$ and $Z'_n:=\sum_{i\le n}W'_i.$ Then (\mathcal{S}'_n,Z'_n) is a coupling of $(\mathcal{S}_n,Z_n).$ By the coupling inequality

$$
||\mu_{S_n} - \mu_{Z_n}||_{TV} \leq \mathbb{P}[S'_n \neq Z'_n] \leq \sum_{i \leq n} \mathbb{P}[X'_i \neq W'_i] = \sum_{i \leq n} \mathbb{P}[W'_i \geq 2]
$$

=
$$
\sum_{i \leq n} \sum_{j \geq 2} e^{-\lambda_j} \frac{\lambda_j^j}{j!} \leq \sum_{i \leq n} \frac{\lambda_i^2}{2} \sum_{\ell \geq 0} e^{-\lambda_j} \frac{\lambda_i^{\ell}}{\ell!} = \sum_{i \leq n} \frac{\lambda_i^2}{2}.
$$

イロト イ押 トイヨ トイヨト

[Definitions and examples](#page-2-0) [Coupling inequality](#page-6-0)

Maps reduce total variation distance

Theorem

Let X and Y be random variables taking values in (*S*, S)*, let h be a measurable map from* (S, S) *to* (S', S') *, and let* $X' := h(X)$ *and Y*⁰ := *h*(*Y*)*. Denoting by* µ*^Z the law of random variable Z, it holds that*

$$
\|\mu_{X'} - \mu_{Y'}\|_{TV} \le \|\mu_X - \mu_Y\|_{TV}.
$$

Proof:

$$
\sup_{A' \in \mathcal{S}'} |\mathbb{P}[X' \in A'] - \mathbb{P}[Y' \in A']| = \sup_{A' \in \mathcal{S}'} |\mathbb{P}[h(X) \in A'] - \mathbb{P}[h(Y) \in A']|
$$

$$
= \sup_{A' \in \mathcal{S}'} |\mathbb{P}[X \in h^{-1}(A')] - \mathbb{P}[Y \in h^{-1}(A')]|
$$

$$
= \sup_{A \in \mathcal{S}} |\mathbb{P}[X \in A] - \mathbb{P}[Y \in A]|.
$$

(ロ) (伊)

ミメス ヨメ

- [Definitions and examples](#page-2-0)
- [Coupling inequality](#page-6-0) \bullet

(2) Application: Erdös-Rényi degree sequence

[Application: Harmonic functions on lattices and trees](#page-22-0)

イロト イ押 トイヨ トイヨト

B

Erdös-Rényi degree sequence I

Let $G_n \sim \mathbb{G}_{n,p_n}$ be an Erdös-Rényi graph with $p_n := \frac{\lambda}{n}$ and $\lambda > 0$. For $i \in [n]$, let $D_i(n)$ be the degree of vertex *i* and define

$$
N_d(n):=\sum_{i=1}^n \mathbb{1}_{\{D_i(n)=d\}}.
$$

Theorem

$$
\frac{1}{n}N_d(n)\to_p \rho_d:=e^{-\lambda}\frac{\lambda^d}{d!},\qquad \forall d\geq 1.
$$

Proof: We proceed in two steps:

- **1** we use the coupling inequality to show that the expectation of $\frac{1}{n}N_d(n)$ is close to p_d ;
- **2** we use Chebyshev's inequality to show that $\frac{1}{n}N_d(n)$ is close to its expectation. イロン イ押ン イヨン イヨン 一重

Erdös-Rényi degree sequence II

Lemma (Convergence of the mean)

$$
\frac{1}{n} \mathbb{E}_{n,p_n} [N_d(n)] \to p_d, \qquad \forall d \geq 1.
$$

Proof of lemma: Note that the *Di*(*n*)s are identically distributed so $\frac{1}{n}$ E_{*n*, p_n} [$N_d(n)$] = \mathbb{P}_{n,p_n} [$D_1(n) = d$]. Moreover $D_1(n) \sim Bin(n-1,p_n)$. Let $S_n \sim Bin(n, p_n)$ and $Z_n \sim Poi(\lambda)$. By the Poisson approximation

$$
||S_n - Z_n||_{\text{TV}} \leq \frac{1}{2} \sum_{i \leq n} \left(\frac{\lambda}{n}\right)^2 \leq \frac{\lambda^2}{2n}.
$$

We can couple $D_1(n)$ and S_n as $(\sum_{i\leq n-1}X_i,\sum_{i\leq n}X_i)$ where the X_i s are i.i.d. Bernoulli with parameter $\frac{\lambda}{n}$. By the coupling inequality

$$
||D_1(n)-S_n||_{TV}\leq \mathbb{P}\left[\sum_{i\leq n-1}X_i\neq \sum_{i\leq n}X_i\right]=\mathbb{P}[X_n=1]=\frac{\lambda}{n}.
$$

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

B

Erdös-Rényi degree sequence III

By the triangle inequality for total variation distance,

$$
\frac{1}{2}\sum_{d\geq 0}|\mathbb{P}_{n,p_n}[D_1(n)=d]-p_d|\leq \frac{\lambda+\lambda^2/2}{n}.
$$

Therefore,

$$
\left|\frac{1}{n}\mathbb{E}_{n,p_n}\left[\mathsf{N}_d(n)\right]-p_d\right|\leq \frac{2\lambda+\lambda^2}{n}\to 0.
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷.

Erdös-Rényi degree sequence IV

Lemma (Concentration around the mean)

$$
\mathbb{P}_{n,p_n}\left[\left|\frac{1}{n}N_d(n)-\frac{1}{n}\mathbb{E}_{n,p_n}\left[N_d(n)\right]\right|\geq \varepsilon\right]\leq \frac{2\lambda+1}{\varepsilon^2 n}, \qquad \forall d\geq 1, \forall n.
$$

Proof of lemma: By Chebyshev's inequality, for all $\varepsilon > 0$

$$
\mathbb{P}_{n,p_n}\left[\left|\frac{1}{n}N_d(n)-\frac{1}{n}\mathbb{E}_{n,p_n}\left[N_d(n)\right]\right|\geq \varepsilon\right]\leq \frac{\text{Var}_{n,p_n}\left[\frac{1}{n}N_d(n)\right]}{\varepsilon^2}.
$$

Note that

$$
\begin{split} \text{Var}_{n,p_{n}}\left[\frac{1}{n}N_{d}(n)\right] &= \frac{1}{n^{2}}\left\{\mathbb{E}_{n,p_{n}}\left[\left(\sum_{i\leq n}\mathbbm{1}_{\{D_{i}(n)=d\}}\right)^{2}\right] - (n\mathbb{P}_{n,p_{n}}[D_{1}(n)=d])^{2}\right\} \\ &= \frac{1}{n^{2}}\left\{n(n-1)\mathbb{P}_{n,p_{n}}[D_{1}(n)=d,D_{2}(n)=d] \\ &+ n\mathbb{P}_{n,p_{n}}[D_{1}(n)=d] - n^{2}\mathbb{P}_{n,p_{n}}[D_{1}(n)=d]^{2}\right\} \end{split}
$$

イロト イ伊 トイヨ トイヨ トー

 \Rightarrow

Erdös-Rényi degree sequence V

$$
\operatorname{Var}_{n,p_n}\left[\frac{1}{n}N_d(n)\right] \leq \frac{1}{n} + \left\{\mathbb{P}_{n,p_n}[D_1(n) = d, D_2(n) = d] - \mathbb{P}_{n,p_n}[D_1(n) = d]^2\right\}
$$

We bound the second term using a coupling. Let Y_1 and Y_2 be independent Bin($n-2$, p_n) and let X_1 and X_2 be independent Ber(p_n). Then the term in curly bracket above is equal to

$$
\mathbb{P}[(X_1 + Y_1, X_1 + Y_2) = (d, d)] - \mathbb{P}[(X_1 + Y_1, X_2 + Y_2) = (d, d)]
$$
\n
$$
\leq \mathbb{P}[(X_1 + Y_1, X_1 + Y_2) = (d, d), (X_1 + Y_1, X_2 + Y_2) \neq (d, d)]
$$
\n
$$
\leq \mathbb{P}[Y_2 = d - 1, X_1 = 1, X_2 = 0] + \mathbb{P}[Y_2 = d, X_1 = 0, X_2 = 1]
$$
\n
$$
\leq \frac{2\lambda}{n}.
$$

So $Var_{n,p_n} \left[\frac{1}{n} N_d(n) \right] \leq \frac{2\lambda+1}{n}$.

イロト イ押 トイヨ トイヨ トー

÷. QQ

- [Definitions and examples](#page-2-0)
- [Coupling inequality](#page-6-0) \bullet

Application: Erdös-Rényi degree sequence

3 [Application: Harmonic functions on lattices and trees](#page-22-0)

イロト イ団 トイヨ トイヨ トー

÷. QQ

Coupling and bounded harmonic functions I

Lemma

Let (*Xn*) *be a Markov chain on a (finite or) countable state space V with transition matrix P and let* \mathbb{P}_x *be the law of* (X_n) *started at x. Recall that a function h* : $V \rightarrow \mathbb{R}$ *is P*-harmonic on *V (or harmonic for short) if*

$$
h(x) = \sum_{y \in V} P(x, y)h(y), \qquad \forall x \in V.
$$

If, for all y, z \in *V, there is a coupling* $((Y_n),(Z_n))$ *of* \mathbb{P}_Y *and* \mathbb{P}_Z *such that*

$$
\lim_n \mathbb{P}[Y_n \neq Z_n] = 0,
$$

then all bounded harmonic functions on V are constant.

E

 $2Q$

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ .

Coupling and bounded harmonic functions II

Proof: Let *f* be bounded and harmonic on *V* with $\sup_x |f(x)| = M < +\infty$. Let *v*, *z* be any points in *V*. By harmonicity, $(f(Y_n))$ and $(f(Z_n))$ are martingales and, in particular,

$$
\mathbb{E}[f(Y_n)] = \mathbb{E}[f(Y_0)] = f(y) \text{ and } \mathbb{E}[f(Z_n)] = \mathbb{E}[f(Z_0)] = f(z).
$$

So by Jensen's inequality and the boundedness assumption

 $|f(y)-f(z)| = |\mathbb{E}[f(Y_n)] - \mathbb{E}[f(Z_n)]| \leq \mathbb{E}[f(Y_n) - f(Z_n)] \leq 2M \mathbb{P}[Y_n \neq Z_n] \to 0.$ So $f(y) = f(z)$.

イロト イ押 トイヨ トイヨ トーヨー

Harmonic functions on \mathbb{Z}^d I

Theorem

All bounded harmonic functions on Z *^d are constant.*

Proof: Clearly, *h* is harmonic with respect to simple random walk if and only if it is harmonic with respect to lazy simple random walk. Let \mathbb{P}_Y and \mathbb{P}_Z be the laws of lazy simple random walk on \mathbb{Z}^d started at y and $z.$ We construct a coupling $((Y_n),(Z_n)) = ((Y_n^{(i)})_{i\in [d]},(Z_n^{(i)})_{i\in [d]})$ of \mathbb{P}_y and \mathbb{P}_z as follows: at time *n*, pick a coordinate $I \in [d]$ uniformly at random, then

- if $Y_n^{(I)}=Z_n^{(I)}$ then do nothing with probability 1/2 and otherwise pick *W* ∈ {−1, +1} uniformly at random, set $Y_{n+1}^{(l)} = Z_{n+1}^{(l)} := Z_n^{(l)} + W$ and leave the other coordinates unchanged;
- if instead $Y_n^{(l)} \neq Z_n^{(l)}$, pick $W \in \{-1, +1\}$ uniformly at random, and with probability 1/2 set $Y_{n+1}^{(l)} := Y_n^{(l)} + W$ and leave Z_n and the other coordinates of Y_n unchanged, or otherwise set $Z_{n+1}^{(I)}:=Z_n^{(I)}+W$ and leave Y_n and the other coordinates of Z_n unchanged.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \equiv

Harmonic functions on \mathbb{Z}^d II

It is straightforward to check that $((Y_n), (Z_n))$ is indeed a coupling of \mathbb{P}_v and \mathbb{P}_z . To apply the previous lemma, it remains to bound $\mathbb{P}[Y_n \neq Z_n]$.

The key is to note that, for each coordinate *i*, the difference $(Y_n^{(i)} - Z_n^{(i)})$ is itself a random walk on $\mathbb Z$ started at $\mathsf y^{(i)} - \mathsf z^{(i)}$ with holding probability 1 $-\frac{1}{q}$ —until it hits 0. Simple random walk on $\mathbb Z$ is irreducible and recurrent. The holding probability does not affect the type of the walk, as can be seen for instance from the characterization in terms of effective resistance. So $(Y_n^{(i)} - Z_n^{(i)})$ hits 0 in finite time with probability 1 and, hence, $\mathbb{P}[Y_n^{(i)} \neq Z_n^{(i)}] \to 0.$

By a union bound,

$$
\mathbb{P}[Y_n \neq Z_n] \leq \sum_{i \in [d]} \mathbb{P}[Y_n^{(i)} \neq Z_n^{(i)}] \to 0,
$$

as desired.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

Harmonic functions on \mathbb{T}_d I

Let \mathbb{T}_d be the infinite d-regular tree with root ρ . For $x \in \mathbb{T}_d$, we let *T^x* be the subtree, rooted at *x*, of descendants of *x*.

Theorem

For d \geq 3*, let* (X_n) *be simple random walk on* \mathbb{T}_d *and let P be the corresponding transition matrix. Let a be a neighbor of the root and consider the function*

 $h(x) = \mathbb{P}_{x}[X_{n} \in \mathcal{T}_{a}$ for all but finitely many n.

Then h is a non-constant, bounded P-harmonic function on \mathbb{T}_{d} *.*

イロメ イ押 メイヨメ イヨメ

Harmonic functions on \mathbb{T}_d II

Proof: The function *h* is clearly bounded and by the usual one-step trick

$$
h(x) = \sum_{y \sim x} \frac{1}{d} \mathbb{P}_y[X_n \in T_0 \text{ for all but finitely many } n] = \sum_{y} P(x, y)h(y),
$$

so *h* is *P*-harmonic.

Let $b \neq a$ be a neighbor of the root. The key of the proof is:

Lemma

$$
q:=\mathbb{P}_a[\tau_\rho=+\infty]=\mathbb{P}_b[\tau_\rho=+\infty]>0.
$$

Proof of lemma: Let (Z_n) be simple random walk on \mathbb{T}_d started at *a* until the walk hits 0 and let *Lⁿ* be the graph distance between *Zⁿ* and the root. Then (L_n) is a biased random walk on $\mathbb Z$ started at 1 jumping to the right with probability 1 $-\frac{1}{d}$ and jumping to the left with probability $\frac{1}{d}$. The probability that (L_n L_n) hits 0 in finit[e](#page-27-0) time is $<$ 1 because 1 $\frac{1}{d}$ $\frac{1}{d}$ $\frac{1}{d}$ $>$ [2](#page-27-0) [wh](#page-29-0)en $d \geq$ [3.](#page-29-0)

Harmonic functions on \mathbb{T}_d III

Note that

$$
h(\rho)\leq \left(1-\frac{1}{d}\right)(1-q)<1,
$$

by considering the possibility that the random walk started at ρ moves away from *a* on the first step and never comes back to ρ . Moreover, similarly,

$$
h(a)=q+(1-q)h(\rho).
$$

Since $h(\rho) \neq 1$ and $q > 0$, this shows that $h(a) > h(\rho)$.

イロト イ押 トイヨ トイヨ トー

÷. QQ