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Galton-Watson branching processes I

Definition
A Galton-Watson branching process is a Markov chain of the
following form:

Let Z0 := 1.
Let X (i , t), i ≥ 1, t ≥ 1, be an array of i.i.d. Z+-valued
random variables with finite mean m = E[X (1,1)] < +∞,
and define inductively,

Zt :=
∑

1≤i≤Zt−1

X (i , t).
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Galton-Watson branching processes II

Further remarks:
1 The random variable Zt models the size of a population at

time (or generation) t . The random variable X (i , t)
corresponds to the number of offspring of the i-th individual
(if there is one) in generation t − 1. Generation t is formed
of all offspring of the individuals in generation t − 1.

2 We denote by {pk}k≥0 the law of X (1,1). We also let
f (s) := E[sX(1,1)] be the corresponding probability
generating function.

3 By tracking genealogical relationships, i.e. who is whose
child, we obtain a tree T rooted at the single individual in
generation 0 with a vertex for each individual in the
progeny and an edge for each parent-child relationship.
We refer to T as a Galton-Watson tree.
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Exponential growth I

Lemma

Let Mt := m−tZt . Then (Mt) is a nonnegative martingale with
respect to the filtration Ft = σ(Z0, . . . ,Zt). In particular,
E[Zt ] = mt .

Proof: Recall the following lemma:

Lemma: Let (Ω,F ,P) be a probability space. If Y1 = Y2 a.s. on B ∈ F then
E[Y1 | F ] = E[Y2 | F ] a.s. on B.

On {Zt−1 = k},

E[Zt | Ft−1] = E

 ∑
1≤j≤k

X (j , t)

∣∣∣∣∣Ft−1

 = mk = mZt−1.

This is true for all k . Rearranging shows that (Mt ) is a martingale. For the
second claim, note that E[Mt ] = E[M0] = 1.
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Exponential growth II

Theorem
We have Mt → M∞ < +∞ a.s. for some nonnegative random
variable M∞ ∈ σ(∪tFt) with E[M∞] ≤ 1.

Proof: This follows immediately from the martingale convergence theorem for
nonnegative martingales and Fatou’s lemma.
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Extinction: some observations I

Observe that 0 is a fixed point of the process. The event

{Zt → 0} = {∃t : Zt = 0},

is called extinction. Establishing when extinction occurs is a
central question in branching process theory. We let η be the
probability of extinction. Throughout, we assume that p0 > 0
and p1 < 1. Here is a first result:

Theorem
A.s. either Zt → 0 or Zt → +∞.

Proof: The process (Zt ) is integer-valued and 0 is the only fixed point of the
process under the assumption that p1 < 1. From any state k , the probability
of never coming back to k > 0 is at least pk

0 > 0, so every state k > 0 is
transient. The claim follows.
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Extinction: some observations II

Theorem (Critical branching process)
Assume m = 1. Then Zt → 0 a.s., i.e., η = 1.

Proof: When m = 1, (Zt ) itself is a martingale. Hence (Zt ) must converge to
0 by the corollaries above.
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Main result I

Let ft(s) = E[sZt ]. Note that, by monotonicity,

η = P[∃t ≥ 0 : Zt = 0] = lim
t→+∞

P[Zt = 0] = lim
t→+∞

ft(0),

Moreover, by the Markov property, ft as a natural recursive
form:

ft(s) = E[sZt ]

= E[E[sZt | Ft−1]]

= E[f (s)Zt−1 ]

= ft−1(f (s)) = · · · = f (t)(s),

where f (t) is the t-th iterate of f .

Sébastien Roch, UW–Madison Modern Discrete Probability – Branching processes



Basic definitions
Extinction

Random-walk representation
Application: Bond percolation on Galton-Watson trees

Main result II

Theorem (Extinction probability)
The probability of extinction η is given by the smallest fixed
point of f in [0,1]. Moreover:

(Subcritical regime) If m < 1 then η = 1.
(Supercritical regime) If m > 1 then η < 1.

Proof: The case p0 + p1 = 1 is straightforward: the process dies almost
surely after a geometrically distributed time.

So we assume p0 + p1 < 1 for the rest of the proof.
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Main result: proof I

Lemma: On [0, 1], the function f satisfies:

(a) f (0) = p0, f (1) = 1;

(b) f is indefinitely differentiable on [0, 1);

(c) f is strictly convex and increasing;

(d) lims↑1 f ′(s) = m < +∞.

Proof: (a) is clear by definition. The function f is a power series with radius of
convergence R ≥ 1. This implies (b). In particular,

f ′(s) =
∑
i≥1

ipisi−1 ≥ 0, and f ′′(s) =
∑
i≥2

i(i − 1)pisi−2 > 0,

because we must have pi > 0 for some i > 1 by assumption. This proves (c).
Since m < +∞, f ′(1) = m is well defined and f ′ is continuous on [0, 1], which
implies (d).
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Main result: proof II

Lemma: We have:

If m > 1 then f has a unique fixed point η0 ∈ [0, 1).

If m < 1 then f (t) > t for t ∈ [0, 1). (Let η0 := 1 in that case.)

Proof: Assume m > 1. Since f ′(1) = m > 1, there is δ > 0 s.t.
f (1− δ) < 1− δ. On the other hand f (0) = p0 > 0 so by continuity of f there
must be a fixed point in (0, 1− δ). Moreover, by strict convexity and the fact
that f (1) = 1, if x ∈ (0, 1) is a fixed point then f (y) < y for y ∈ (x , 1), proving
uniqueness.

The second part follows by strict convexity and monotonicity.
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Main result: proof III
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Main result: proof IV

Lemma: We have:

If x ∈ [0, η0), then f (t)(x) ↑ η0

If x ∈ (η0, 1) then f (t)(x) ↓ η0

Proof: By monotonicity, for x ∈ [0, η0), we have x < f (x) < f (η0) = η0.
Iterating

x < f (1)(x) < · · · < f (t)(x) < f (t)(η0) = η0.

So f (t)(x) ↑ L ≤ η0. By continuity of f we can take the limit inside of

f (t)(x) = f (f (t−1)(x)),

to get L = f (L). So by definition of η0 we must have L = η0.
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Main result: proof V
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Example: Poisson branching process

Example

Consider the offspring distribution X (1,1) ∼ Poi(λ) with λ > 0.
We refer to this case as the Poisson branching process. Then

f (s) = E[sX(1,1)] =
∑
i≥0

e−λ
λi

i!
si = eλ(s−1).

So the process goes extinct with probability 1 when λ ≤ 1. For
λ > 1, the probability of extinction ηλ is the smallest solution in
[0,1] to the equation

e−λ(1−x) = x .

The survival probability ζλ := 1− ηλ satisfies 1− e−λζλ = ζλ.
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Extinction: back to exponential growth I

Conditioned on extinction, M∞ = 0 a.s.

Theorem
Conditioned on nonextinction, either M∞ = 0 a.s. or M∞ > 0
a.s. In particular, P[M∞ = 0] ∈ {η,1}.

Proof: A property of rooted trees is said to be inherited if all finite trees satisfy
this property and whenever a tree satisfies the property then so do all the
descendant trees of the children of the root. The property {M∞ = 0} is
inherited. The result then follows from the following 0-1 law.

Lemma: For a Galton-Watson tree T , an inherited property A has,
conditioned on nonextinction, probability 0 or 1.
Proof of lemma: Let T (1), . . . ,T (Z1) be the descendant subtrees of the
children of the root. Then, by independence,

P[A] = E[P[T ∈ A |Z1]] ≤ E[P[T (i) ∈ A, ∀i ≤ Z1 |Z1]] = E[P[A]Z1 ] = f (P[A]),

so P[A] ∈ [0, η] ∪ {1}. Also P[A] ≥ η because A holds for finite trees.
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Extinction: back to exponential growth II

Theorem
Let (Zt) be a branching process with m = E[X (1,1)] > 1 and
σ2 = Var[X (1,1)] < +∞. Then, (Mt) converges in L2 and, in
particular, E[M∞] = 1.

Proof: From the orthogonality of increments

E[M2
t ] = E[M2

t−1] + E[(Mt −Mt−1)2].

On {Zt−1 = k}
E[(Mt −Mt−1)2 | Ft−1] = m−2tE[(Zt −mZt−1)2 | Ft−1]

= m−2tE

( k∑
i=1

X (i , t)−mk

)2 ∣∣∣∣∣Ft−1


= m−2tkσ2

= m−2tZt−1σ
2.
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Extinction: back to exponential growth III

Hence
E[M2

t ] = E[M2
t−1] + m−t−1σ2.

Since E[M2
0 ] = 1,

E[M2
t ] = 1 + σ2

t+1∑
i=2

m−i ,

which is uniformly bounded when m > 1. So (Mt ) converges in L2. Finally by
Fatou’s lemma

E|M∞| ≤ sup ‖Mt‖1 ≤ sup ‖Mt‖2 < +∞

and
|E[Mt ]− E[M∞]| ≤ ‖Mt −M∞‖1 ≤ ‖Mt −M∞‖2,

implies the convergence of expectations.
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Exploration process I

We consider an exploration process of the Galton-Watson tree
T . The exploration process, started at the root 0, has 3 types of
vertices:

- At : active, Et : explored, Nt : neutral.
We start with A0 := {0}, E0 := ∅, and N0 contains all other
vertices in T . At time t , if At−1 = ∅ we let
(At , Et ,Nt) := (At−1, Et−1,Nt−1). Otherwise, we pick an
element, at , from At−1 and set:

- At := At−1 ∪ {x ∈ Nt−1 : {x ,at} ∈ T}\{at},
- Et := Et−1 ∪ {at},
- Nt := Nt−1\{x ∈ Nt−1 : {x ,at} ∈ T}.

To be concrete, we choose at in breadth-first search (or
first-come-first-serve) manner: we exhaust all vertices in
generation t before considering vertices in generation t + 1.
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Exploration process II

We imagine revealing the edges of T as they are encountered
in the exploration process and we let (Ft) be the corresponding
filtration. In words, starting with 0, the Galton-Watson tree T is
progressively grown by adding to it at each time a child of one
of the previously explored vertices and uncovering its children
in T . In this process, Et is the set of previously explored
vertices and At is the set of vertices who are known to belong
to T but whose full neighborhood is waiting to be uncovered.
The rest of the vertices form the set Nt .
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Exploration process III

Let At := |At |, Et := |Et |, and Nt := |Nt |. Note that (Et) is
non-decreasing while (Nt) is non-increasing. Let

τ0 := inf{t ≥ 0 : At = 0},

(which by convention is +∞ if there is no such t). The process
is fixed for all t > τ0. Notice that Et = t for all t ≤ τ0, as exactly
one vertex is explored at each time until the set of active
vertices is empty.

Lemma
Let W be the total progeny. Then

W = τ0.
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Random walk representation I

The process (At) admits a simple recursive form. Recall that
A0 := 1. Conditioning on Ft−1:

- If At−1 = 0, the exploration process has finished its course
and At = 0. Otherwise, (a) one active vertex becomes an
explored vertex and (b) its neutral neighbors become
active vertices. That is,

At =


At−1 +

[
−1︸︷︷︸
(a)

+ Xt︸︷︷︸
(b)

]
, t − 1 < τ0,

0, o.w.

where Xt is distributed according to the offspring
distribution.
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Random walk representation II

We let Yt = Xt − 1 ≥ −1 and

St := 1 +
t∑

i=1

Yi ,

with S0 := 1. Then

τ0 = inf{t ≥ 0 : St = 0}
= inf{t ≥ 0 : 1 + [X1 − 1] + · · ·+ [Xt − 1] = 0}
= inf{t ≥ 0 : X1 + · · ·+ Xt = t − 1},

and (At) is a random walk started at 1 with steps (Yt) stopped
when it hits 0 for the first time:

At = (St∧τ0).
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Duality principle I

Theorem
Let (Zt) be a branching process with offspring distribution
{pk}k≥0 and extinction probability η < 1. Let (Z ′t ) be a
branching process with offspring distribution {p′k}k≥0 where

p′k = ηk−1pk .

Then (Zt) conditioned on extinction has the same distribution
as (Z ′t ), which is referred to as the dual branching process.
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Duality principle II

Some remarks:
Note that ∑

k≥0

p′k =
∑
k≥0

ηk−1pk = η−1f (η) = 1,

because η is a fixed point of f . So {p′k}k≥0 is indeed a
probability distribution.
Note further that∑

k≥0

kp′k =
∑
k≥0

kηk−1pk = f ′(η) < 1,

since f ′ is strictly increasing, f (η) = η < 1 and f (1) = 1. So
the dual branching process is subcritical.
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Duality principle III

Proof: We use the random walk representation. Let H = (X1, . . . ,Xτ0 ) and
H ′ = (X ′1, . . . ,X

′
τ ′0

) be the histories of the processes (Zt ) and (Z ′t )

respectively. (Under breadth-first search, the process (Zt ) can be
reconstructed from H.) In the case of extinction, the history of (Zt ) has finite
length. We call (x1, . . . , xt ) a valid history if x1 + · · ·+ xi − (i − 1) > 0 for all
i < t and x1 + · · ·+ xt − (t − 1) = 0. By definition of the conditional
probability, for a valid history (x1, . . . , xt ) with a finite t ,

P[H = (x1, . . . , xt ) | τ0 < +∞] =
P[H = (x1, . . . , xt )]

P[τ0 < +∞]
= η−1

t∏
i=1

pxi .

Because x1 + · · ·+ xt = t − 1,

η−1
t∏

i=1

pxi = η−1
t∏

i=1

η1−xi p′xi
=

t∏
i=1

p′xi
= P[H ′ = (x1, . . . , xt )].
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Duality principle: example

Example (Poisson branching process)

Let (Zt) be a Galton-Watson branching process with offspring
distribution Poi(λ) where λ > 1. Then the dual probability
distribution is given by

p′k = ηk−1pk = ηk−1e−λ
λk

k !
= η−1e−λ

(λη)k

k !
,

where recall that e−λ(1−η) = η, so

p′k = eλ(1−η)e−λ
(λη)k

k !
= e−λη

(λη)k

k !
.

That is, the dual branching process has offspring distribution
Poi(λη).
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Hitting-time theorem

Theorem
Let (Zt) be a Galton-Watson branching process with total
progeny W. In the random walk representation of (Zt),

P[W = t ] =
1
t
P[X1 + · · ·+ Xt = t − 1],

for all t ≥ 1.

Note that this formula is rather remarkable as the probability on
the l.h.s. is P[Si > 0,∀i < t and St = 0] while the probability on
the r.h.s. is P[St = 0].
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Spitzer’s combinatorial lemma I

We start with a lemma of independent interest. Let
u1, . . . ,ut ∈ R and define r0 := 0 and ri := u1 + · · ·+ ui for
1 ≤ i ≤ t . We say that j is a ladder index if rj > r0 ∨ · · · ∨ rj−1.
Consider the cyclic permutations of u = (u1, . . . ,ut): u(0) = u,
u(1) = (u2, . . . ,ut ,u1), . . . , u(t−1) = (ut ,u1, . . . ,ut−1). Define
the corresponding partial sums r (β)j := u(β)

1 + · · ·+ u(β)
j for

j = 1, . . . , t and β = 0, . . . , t − 1. Observe that

(r (β)1 , . . . , r (β)t )

= (rβ+1 − rβ, rβ+2 − rβ, . . . , rt − rβ,
[rt − rβ] + r1, [rt − rβ] + r2, . . . , [rt − rβ] + rβ)

= (rβ+1 − rβ, rβ+2 − rβ, . . . , rt − rβ,
rt − [rβ − r1], rt − [rβ − r2], . . . , rt − [rβ − rβ−1], rt) (1)
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Spitzer’s combinatorial lemma II

Lemma
Assume rt > 0. Let ` be the number of cyclic permutations such
that t is a ladder index. Then ` ≥ 1. Moreover, each such cyclic
permutation has exactly ` ladder indices.

Proof: We first show that ` ≥ 1, i.e., there is at least one cyclic permutation
where t is a ladder index. Let β be the smallest index achieving the maximum
of r1, . . . , rt , i.e.,

rβ > r1 ∨ · · · ∨ rβ−1 and rβ ≥ rβ+1 ∨ · · · ∨ rt .

From (1),
rβ+i − rβ ≤ 0 < rt , ∀i = 1, . . . , t − β,

and
rt − [rβ − rj ] < rt , ∀j = 1, . . . , β − 1.

Moreover, rt > 0 = r0 by assumption. So, in u(β), t is a ladder index.
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Spitzer’s combinatorial lemma III

Since ` ≥ 1, we can assume w.l.o.g. that u is such that t is a ladder index.
Then β is a ladder index in u if and only if

rβ > r0 ∨ · · · ∨ rβ−1,

if and only if

rt > rt − rβ and rt − [rβ − rj ] < rt , ∀j = 1, . . . , β − 1.

Moreover, because rt > rj for all j , we have rt − [rβ+i − rβ ] = (rt − rβ+i ) + rβ
and the last equation is equivalent to

rt > rt− [rβ+i−rβ ], ∀i = 1, . . . , t−β and rt− [rβ−rj ] < rt , ∀j = 1, . . . , β−1.

That is, t is a ladder index in the β-th cyclic permutation.
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Back to the hitting-time theorem: proof I

Proof: Let Ri := 1− Si and Ui := 1− Xi for all i = 1, . . . , t and let R0 := 0.
Then

{X1 + · · ·+ Xt = t − 1} = {Rt = 1},
and

{W = t} = {t is the first ladder index in R1, . . . ,Rt}.
By symmetry, for all β

P[t is the first ladder index in R1, . . . ,Rt ]

= P[t is the first ladder index in R(β)
1 , . . . ,R(β)

t ].

Let Eβ be the event on the last line. Hence

P[W = t ] = E[1E1 ] =
1
t
E

 t∑
β=1

1Eβ


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Back to the hitting-time theorem: proof II

Proof: By Spitzer’s combinatorial lemma, there is at most one cyclic
permutation where t is the first ladder index. In particular,

∑t
β=1 1Eβ ∈ {0, 1}.

So
P[W = t ] =

1
t
P
[
∪t
β=1Eβ

]
.

Finally observe that, because R0 = 0 and Ui ≤ 1 for all i , the partial sum at
the j-th ladder index must take value j . So the event {∪t

β=1Eβ} implies that
{Rt = 1} because the last partial sum of all cyclic permutations is Rt .
Similarly, because there is at least one cyclic permutation such that t is a
ladder index, the event {Rt = 1} implies {∪t

β=1Eβ}. Therefore,

P[W = t ] =
1
t
P [Rt = 1] ,

which concludes the proof.
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Hitting-time theorem: example

Example (Poisson branching process)

Let (Zt) be a Galton-Watson branching process with offspring
distribution Poi(λ) where λ > 0. Let W be its total progeny. By
the hitting-time theorem, for t ≥ 1,

P[W = t ] =
1
t
P[X1 + · · ·+ Xt = t − 1]

=
1
t

e−λt (λt)t−1

(t − 1)!

= e−λt (λt)t−1

t!
,

where we used that a sum of independent Poisson is Poisson.
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Bond percolation on Galton-Watson trees I

Let T be a Galton-Watson tree for an offspring distribution with
mean m > 1. Perform bond percolation on T with density p.

Theorem
Conditioned on nonextinction,

pc(T ) =
1
m

a.s.

Proof: Let C0 be the cluster of the root in T with density p. We can think of C0

as being generated by a Galton-Watson branching process where the
offspring distribution is the law of

∑X(1,1)
i=1 Ii where the Iis are i.i.d. Ber(p) and

X (1, 1) is distributed according to the offspring distribution of T . In particular,
by conditioning on X (1, 1), the offspring mean under C0 is mp. If mp ≤ 1 then

1 = Pp[|C0| < +∞] = E[Pp[|C0| < +∞|T ]],

and we must have Pp[|C0| < +∞|T ] = 1 a.s. In other words, pc(T ) ≥ 1
m a.s.
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Bond percolation on Galton-Watson trees II

On the other hand, the property of trees {Pp[|C0| < +∞|T ] = 1} is inherited.
So by our previous lemma, conditioned on nonextinction, it has probability 0
or 1. That probability is of course 1 on extinction. So by

Pp[|C0| < +∞] = E[Pp[|C0| < +∞|T ]],

if the probability is 1 conditioned on nonextinction then it must be that
mp ≤ 1. In other words, for any fixed p such that mp > 1, conditioned on
nonextinction Pp[|C0| < +∞|T ] = 0 a.s. By monotonicity of
Pp[|C0| < +∞|T ] in p, taking a limit pn → 1/m proves the result.
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