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Basic definitions

Galton-Watson branching processes |

A Galton-Watson branching process is a Markov chain of the
following form:
@ Let Zo =1.
@ Let X(i,t),i>1,t>1, be an array of i.i.d. Z,-valued
random variables with finite mean m = E[X(1,1)] < 400,
and define inductively,

Zi:= > X(it).

1<i<Z; 4
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Basic definitions

Galton-Watson branching processes |l

Further remarks:

@ The random variable Z; models the size of a population at
time (or generation) t. The random variable X(i/, t)
corresponds to the number of offspring of the i-th individual
(if there is one) in generation t — 1. Generation t is formed
of all offspring of the individuals in generation f — 1.

@ We denote by {px}«>o the law of X(1,1). We also let
f(s) := E[sX(:")] be the corresponding probability
generating function.

© By tracking genealogical relationships, i.e. who is whose
child, we obtain a tree T rooted at the single individual in
generation 0 with a vertex for each individual in the
progeny and an edge for each parent-child relationship.
We refer to T as a Galton-Watson tree.
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Basic definitions

Exponential growth |

Let M; := m~tZ,. Then (M) is a nonnegative martingale with
respect to the filtration F; = o(2y, . .., Z). In particular,
E[Zt] =m.

Proof: Recall the following lemma:

Lemma: Let (Q, F,P) be a probability space. If Y1 = Y a.s. on B € F then
E[Y;|F] = E[Y2|F] a.s.on B.

On {Z_1 =k},

=mk = mZ_;.

E[Z | Fi-1] =E Ft—1

> XG.t)

1<j<k

This is true for all k. Rearranging shows that (M;) is a martingale. For the
second claim, note that E[M;] = E[Mo] = 1. n
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Basic definitions

Exponential growth Il

We have M; — M., < +oo a.s. for some nonnegative random
variable My, € o(UtFy) with E[My] < 1.

Proof: This follows immediately from the martingale convergence theorem for

nonnegative martingales and Fatou’s lemma. [
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Extinction: some observations |

Observe that 0 is a fixed point of the process. The event
{Z — 0} = {3t : Z; =0},

is called extinction. Establishing when extinction occurs is a
central question in branching process theory. We let n be the
probability of extinction. Throughout, we assume that py > 0
and py; < 1. Here is a first result:

A.s. either Z; — 0 or Z; — +oo0.

Proof: The process (Z;) is integer-valued and 0 is the only fixed point of the
process under the assumption that p; < 1. From any state k, the probability
of never coming back to k > 0 is at least pf > 0, so every state k > 0 is
transient. The claim follows. |
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Extinction: some observations I

Theorem (Critical branching process)
Assumem=1. ThenZ; — 0 a.s., i.e., n=1.

Proof: When m = 1, (%) itself is a martingale. Hence (Z;) must converge to
0 by the corollaries above. ]
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Main result |

Let f;(s) = E[s%]. Note that, by monotonicity,

n=P[Rt>0:2Z=0]= lim P[Z=0]= (0),
—+o00

lim f;
t—+4o00
Moreover, by the Markov property, f; as a natural recursive
form:

fi(s) = E[s%]
= E[E[s? | Fr+]]
E[f(s)%~]
= f_1(f(s)) =--- = fO(s),

where (1) is the t-th iterate of f.
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Main result Il

Theorem (Extinction probability)

The probability of extinction n is given by the smallest fixed
point of f in [0, 1]. Moreover:

@ (Subcritical regime) If m < 1 thenn = 1.
@ (Supercritical regime) If m > 1 thenn < 1.

Proof: The case py + p1 = 1 is straightforward: the process dies almost
surely after a geometrically distributed time.

So we assume pp + p; < 1 for the rest of the proof.
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Main result: proof |

Lemma: On [0, 1], the function f satisfies:
(@) f(0) =po, f(1) =1;
(b) fis indefinitely differentiable on [0, 1);
(c) fis strictly convex and increasing;
(d) limgpt F/(S) = m < +o0.

Proof: (a) is clear by definition. The function f is a power series with radius of
convergence R > 1. This implies (b). In particular,

f(s)=> ips™" >0, and f'(s)=> i(i—1)ps™?>0,
i>1 i>2
because we must have p; > 0 for some i > 1 by assumption. This proves (c).
Since m < +o0, f'(1) = mis well defined and " is continuous on [0, 1], which
implies (d). [ ]
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Main result: proof Il

Lemma: We have:
@ If m > 1 then f has a unique fixed point o € [0, 1).
@ If m< 1thenf(t) > tforte[0,1). (Letno :=1inthat case.)

Proof: Assume m > 1. Since f'(1) = m > 1, there is § > 0 s.t.

f(1 —d) <1 —4. On the other hand f(0) = py > 0 so by continuity of f there
must be a fixed point in (0,1 — §). Moreover, by strict convexity and the fact
that f(1) = 1, if x € (0, 1) is a fixed point then f(y) < y for y € (x, 1), proving
unigueness.

The second part follows by strict convexity and monotonicity. [ ]
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Main result: proof Il
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Main result: proof IV

Lemma: We have:
@ If x € [0,70), then FO(x) 1 no
@ If x € (1o, 1) then fO(x) | no

Proof: By monotonicity, for x € [0,70), we have x < f(x) < f(no) = no.
Iterating
x < fD(x) < < (%) < FO(ng) = np.

So I (x) 1 L < n. By continuity of f we can take the limit inside of
fO(x) = f(fV(x)),

to get L = f(L). So by definition of o we must have L = ry. ]
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Main result: proof V
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Example: Poisson branching process

Example

Consider the offspring distribution X(1,1) ~ Poi(A) with A > 0.
We refer to this case as the Poisson branching process. Then

i
f(s) = B[sX(:0] = $° e—/\%sl _ M)
i>0 '

So the process goes extinct with probability 1 when A < 1. For
A > 1, the probability of extinction n, is the smallest solution in
[0, 1] to the equation

ef/\(1fx) — x.

The survival probability ¢y := 1 — 7, satisfies 1 — e = (.
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Extinction: back to exponential growth |

Conditioned on extinction, M., = 0 a.s.

Conditioned on nonextinction, either My, = 0 a.s. or Mo, > 0
a.s. In particular, P[M,, = 0] € {n,1}.

Proof: A property of rooted trees is said to be inherited if all finite trees satisfy
this property and whenever a tree satisfies the property then so do all the
descendant trees of the children of the root. The property {M.. = 0} is
inherited. The result then follows from the following 0-1 law.

Lemma: For a Galton-Watson tree T, an inherited property A has,
conditioned on nonextinction, probability 0 or 1.

Proof of lemma: Let T, ..., T(?) be the descendant subtrees of the
children of the root. Then, by independence,

P[A] = E[P[T € A| Z]] < E[P[T" € A Vi < Zi| Zi]] = E[P[A]?] = f(P[A]),

so P[A] € [0,n] U {1}. Also P[A] > n because A holds for finite trees. m
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Extinction: back to exponential growth Il

Let (Z;) be a branching process with m = E[X(1,1)] > 1 and
02 = Var[X(1,1)] < +oc. Then, (M;) converges in L? and, in
particular, E[M] = 1.

Proof: From the orthogonality of increments
E[M?] = E[M?_4] + E[(M; — Mi_1)?].
Oon{Z_ 1=k}

E[(M; — My—1)° | Fii] m2E[(Z — mZ—1)? | Fii]

k 2
<Z X(i, t) — mk)

i=1

= mE Fi_1

_ m72lka_2
m72[2;71 02,
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Extinction: back to exponential growth Il

Hence
E[M?] = E[M?_4] + m™ 6%

Since E[M2] = 1,
41 )
EMZ] = 1402 m,
i=2
which is uniformly bounded when m > 1. So (M) converges in L2. Finally by
Fatou’s lemma

E|Ms| < sup |[Mi|l1 < sup [[Mill2 < +o0

and
|E[Mi] — E[Msc]| < [[M; — Moo |1 < [|[M: — Msc]|2,

implies the convergence of expectations. ]
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Random-walk representation

Exploration process |

We consider an exploration process of the Galton-Watson tree
T. The exploration process, started at the root 0, has 3 types of
vertices:

- As: active, & explored, Nt: neutral.
We start with Ag := {0}, & := 0, and N contains all other
vertices in T. Attime t, if 4;_1 = 0 we let
(At, Et, Nt) = (A1, Et—1,Ni_1). Otherwise, we pick an
element, a;, from A;_; and set:

- A=A U{x € Mg {x,ar} € TH{ar,

- & =&_1U {at},

- Ne =N\ {x €Ny 2 {x,ar} € T}
To be concrete, we choose a; in breadth-first search (or
first-come-first-serve) manner: we exhaust all vertices in
generation t before considering vertices in generation t + 1.
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Random-walk representation

Exploration process |l

We imagine revealing the edges of T as they are encountered
in the exploration process and we let (F;) be the corresponding
filtration. In words, starting with 0, the Galton-Watson tree T is
progressively grown by adding to it at each time a child of one
of the previously explored vertices and uncovering its children
in T. In this process, &; is the set of previously explored
vertices and A; is the set of vertices who are known to belong
to T but whose full neighborhood is waiting to be uncovered.
The rest of the vertices form the set V.
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Random-walk representation

Exploration process llI

Let A := | A¢], Et := |&t], and N; ;= |N¢|. Note that (E;) is
non-decreasing while (N;) is non-increasing. Let

70 :=inf{t >0 : A =0},

(which by convention is +oc if there is no such t). The process
is fixed for all t > 5. Notice that E; = t for all t < 7y, as exactly
one vertex is explored at each time until the set of active
vertices is empty.

Let W be the total progeny. Then

W:To.
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Random walk representation |

The process (A;) admits a simple recursive form. Recall that
Ao := 1. Conditioning on F;_1:

- If A;_1 = 0, the exploration process has finished its course
and A; = 0. Otherwise, (a) one active vertex becomes an
explored vertex and (b) its neutral neighbors become
active vertices. That is,

0, 0.W.

where X; is distributed according to the offspring
distribution.
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Random walk representation |l

Welet Y;=X;—1> -1 and

with Sy := 1. Then

7o =inf{t >0 : S =0}
=inf{t>0 : 1 +[Xy —1]+---+[X — 1] =0}
=inf{t>0: X;+---+Xp=t—-1},
and (A;) is a random walk started at 1 with steps (Y;) stopped
when it hits 0 for the first time:

At = (Star)-
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Random-walk representation

Duality principle |

Theorem
Let (Z;) be a branching process with offspring distribution

{px} k>0 and extinction probability n < 1. Let (Z{) be a
branching process with offspring distribution {pj } k>0 where

/

P = 1"k

Then (Z;) conditioned on extinction has the same distribution
as (Z}), which is referred to as the dual branching process.
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Random-walk representation

Duality principle

Some remarks:
@ Note that

o= n"To=n""n) =1,

k>0 k>0

because 7 is a fixed point of f. So {p} }«>o is indeed a
probability distribution.

@ Note further that
> kol =Y kn*'pe=f(n) <A1,

k>0 k>0

since f' is strictly increasing, f(n) =n < 1and f(1) = 1. So
the dual branching process is subcritical.
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Random-walk representation

Duality principle Il

Proof: We use the random walk representation. Let H = (Xj,..., X,) and
H =(Xi,..., X;é) be the histories of the processes (Z;) and (Z/)
respectively. (Under breadth-first search, the process (Z;) can be
reconstructed from H.) In the case of extinction, the history of (Z;) has finite
length. We call (x4, ..., x:) a valid historyif xy +---+ x; — (i— 1) > 0 for all
i<tandxy +- -+ x — (t — 1) = 0. By definition of the conditional
probability, for a valid history (xi, ..., x;) with a finite t,

P[H = (xi, ... .
BIH = (..., x) | 70 < +oo] = LU= (X)) o Tp
i=1

Plro < 4+o0]
Because xy +---+x =1t —1,

t

t t
" [Tpe=n"T]n"""p% =] 0 =PIH = (x1,....x)].
=1 =1

i=1
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Random-walk representation

Duality principle: example

Example (Poisson branching process)

Let (Z;) be a Galton-Watson branching process with offspring
distribution Poi(A) where A > 1. Then the dual probability
distribution is given by

RO OV

k—1 _
ST Ay T

/

P =n"pk =1

where recall that e=*(1-7) = ), so

k k
r a1 e (M) 5, (An)
Pe=e e = e

That is, the dual branching process has offspring distribution

Poi(An).
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Random-walk representation

Hitting-time theorem

Theorem

Let (Z;) be a Galton-Watson branching process with total
progeny W. In the random walk representation of (Z;),

PIW =] = JBIX, &+ X = £~ 1]

forallt > 1.

Note that this formula is rather remarkable as the probability on
the l.h.s. is P[S; > 0,Vi < t and S; = 0] while the probability on
the r.h.s. is P[S; = 0].
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Random-walk representation

Spitzer's combinatorial lemma |

We start with a lemma of independent interest. Let
Uy,...,ure Randdefinerp:=0and r, := uy +--- + u; for

1 <i<t We saythat;is a ladder indexifry > roVv---Vvr_y.
Consider the cyclic permutations of u = (uy, ..., u;): u© = u,
U(1) = (UQ, Lo, U, U1), ceey U(t71) = (Uf7 u,..., Ul‘—1)- Define
the corresponding partial sums rj(B) = ugﬁ) +-+ u]@) for
j=1,...,tand 3=0,...,t— 1. Observe that

(rfﬂ),...,rt(ﬁ))

= (rg41 — I3, 342 — I3, ..., It — I3,
[rt —rg]l 4+ r,[re = rg] + 12, ..., [rt — 18] + 13)

= (rg41 — I3, r342 — I3,..., It — I,
re—I[rs—nl,re—1[rs—ra],....re—[rs —ra—1], 1) (1)

Sébastien Roch, UW-Madison Modern Discrete Probability — Branching processes



Random-walk representation

Spitzer's combinatorial lemma |l

Assume r; > 0. Let ¢ be the number of cyclic permutations such
that t is a ladder index. Then ¢ > 1. Moreover, each such cyclic
permutation has exactly ¢ ladder indices.

Proof: We first show that ¢ > 1, i.e., there is at least one cyclic permutation
where t is a ladder index. Let 5 be the smallest index achieving the maximum
ofry,...,n,ie,

rg>nvV---Vrg_y and rg>rgqV---Vh.

From (1),

rgri—rg<0<n, Vi=1,...,t—p3,
and

n—rs—nl<n, Vi=1,...,6—-1.

Moreover, r; > 0 = ry by assumption. So, in u'®), tis aladder index.
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Random-walk representation

Spitzer’s combinatorial lemma |l

Since ¢ > 1, we can assume w.l.0.g. that u is such that ¢ is a ladder index.
Then g is a ladder index in u if and only if

g >nV---VIrg_q,
if and only if
n>rn—rs and n—p—-rn<nv=1,..,6-1

Moreover, because r; > r; for all j, we have r; — [rai — 1] = (rt — r4i) + 13
and the last equation is equivalent to

n>n—[rsei—rs], Vi=1,...,t—p and n—[rs—nrl<n Vvj=1,...,6-1.

That s, t is a ladder index in the -th cyclic permutation. ]
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Random-walk representation

Back to the hitting-time theorem: proof |

Proof:Let Ri:=1—-S;jand U, :=1— X;foralli=1,... , tandlet Ry := 0.
Then
{X1+"'+X1:t71}:{Rt:1},

and
{W =t} = {tis the first ladder index in Ry, ..., R:}.

By symmetry, for all g

P[t is the first ladder index in Ry, ..., Ri]
= P[t is the first ladder index in R\, ... R{").

Let £s be the event on the last line. Hence

P[W = ] = E[lg,] = }E [i ]lsﬂ]
B=1
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Random-walk representation

Back to the hitting-time theorem: proof I

Proof: By Spitzer's combinatorial lemma, there is at most one cyclic
permutation where t is the first ladder index. In particular, Egﬂ legy, € {0,1}.
So
1 t
PW =] = ;P [U3:15@] .

Finally observe that, because R, = 0 and U; < 1 for all /, the partial sum at
the j-th ladder index must take value j. So the event {U_;&s} implies that
{R: = 1} because the last partial sum of all cyclic permutations is R;.
Similarly, because there is at least one cyclic permutation such that ¢ is a
ladder index, the event {R; = 1} implies {Us_;Es}. Therefore,

P[W:t]:ltIP[Rt:ﬂ,

which concludes the proof.
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Random-walk representation

Hitting-time theorem: example

Example (Poisson branching process)

Let (Z;) be a Galton-Watson branching process with offspring
distribution Poi(\) where A > 0. Let W be its total progeny. By
the hitting-time theorem, for t > 1,

1
1 t—1
_ e—/\t()‘t)

Tt (t=1)
(T
=€ t

where we used that a sum of independent Poisson is Poisson.
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Application: Bond percolation on Galton-Watson trees

Bond percolation on Galton-Watson trees |

Let T be a Galton-Watson tree for an offspring distribution with
mean m > 1. Perform bond percolation on T with density p.

Conditioned on nonextinction,

Proof: Let Cy be the cluster of the root in T with density p. We can think of Cy
as being generated by a Galton-Watson branching process where the

offspring distribution is the law of z,i(}") Iy where the Iis are i.i.d. Ber(p) and
X(1,1) is distributed according to the offspring distribution of T. In particular,

by conditioning on X(1, 1), the offspring mean under Co is mp. If mp < 1 then
1 = Pp[|Co| < +00] = E[Pp[|Co| < +o00]| T]],

and we must have P,[|Co| < +oo| T] = 1 a.s. In other words, p.(T) > 1. a.s.
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Application: Bond percolation on Galton-Watson trees

Bond percolation on Galton-Watson trees |l

On the other hand, the property of trees {Pp[|Co| < +o0| T] = 1} is inherited.
So by our previous lemma, conditioned on nonextinction, it has probability 0
or 1. That probability is of course 1 on extinction. So by

Pp[|Col < +oo] = E[Pp[|Co| < 400 T]],

if the probability is 1 conditioned on nonextinction then it must be that
mp < 1. In other words, for any fixed p such that mp > 1, conditioned on
nonextinction Pp[|Co| < +o00 | T] = 0 a.s. By monotonicity of

Pp[|Co| < +o0| T]in p, taking a limit p, — 1/m proves the result.
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