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Mixing time I

Theorem (Convergence to stationarity)

Consider a finite state space V . Suppose the transition matrix
P is irreducible, aperiodic and has stationary distribution π.
Then, for all x , y, P t (x , y)→ π(y) as t → +∞.

For probability measures µ, ν on V , let their total variation
distance be ‖µ− ν‖TV := supA⊆V |µ(A)− ν(A)|.

Definition (Mixing time)
The mixing time is

tmix(ε) := min{t ≥ 0 : d(t) ≤ ε},

where d(t) := maxx∈V ‖P t (x , ·)− π(·)‖TV.
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Mixing time II

Definition (Separation distance)
The separation distance is defined as

sx (t) := max
y∈V

[
1− P t (x , y)

π(y)

]
,

and we let s(t) := maxx∈V sx (t).

Because both {π(y)} and {P t (x , y)} are non-negative and sum
to 1, we have that sx (t) ≥ 0.

Lemma (Separation distance v. total variation distance)

d(t) ≤ s(t).
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Mixing time III

Proof: Because 1 =
∑

y π(y) =
∑

y P t (x , y),∑
y :P t (x,y)<π(y)

[
π(y)− P t (x , y)

]
=

∑
y :P t (x,y)≥π(y)

[
P t (x , y)− π(y)

]
.

So

‖P t (x , ·)− π(·)‖TV =
1
2

∑
y

∣∣∣π(y)− P t (x , y)
∣∣∣

=
∑

y :P t (x,y)<π(y)

[
π(y)− P t (x , y)

]
=

∑
y :P t (x,y)<π(y)

π(y)

[
1− P t (x , y)

π(y)

]
≤ sx (t).
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Reversible chains

Definition (Reversible chain)
A transition matrix P is reversible w.r.t. a measure η if
η(x)P(x , y) = η(y)P(y , x) for all x , y ∈ V . By summing over y ,
such a measure is necessarily stationary.
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Example I

Recall:

Definition (Random walk on a graph)

Let G = (V ,E) be a finite or countable, locally finite graph.
Simple random walk on G is the Markov chain on V , started at
an arbitrary vertex, which at each time picks a uniformly chosen
neighbor of the current state.

Let (Xt ) be simple random walk on a connected graph G. Then
(Xt ) is reversible w.r.t. η(v) := δ(v), where δ(v) is the degree of
vertex v .
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Example II

Definition (Random walk on a network)

Let G = (V ,E) be a finite or countable, locally finite graph. Let
c : E → R+ be a positive edge weight function on G. We call
N = (G, c) a network. Random walk on N is the Markov chain
on V , started at an arbitrary vertex, which at each time picks a
neighbor of the current state proportionally to the weight of the
corresponding edge.

Any countable, reversible Markov chain can be seen as a
random walk on a network (not necessarily locally finite) by
setting c(e) := π(x)P(x , y) = π(y)P(y , x) for all e = {x , y} ∈ E .
Let (Xt ) be random walk on a network N = (G, c). Then (Xt ) is
reversible w.r.t. η(v) := c(v), where c(v) :=

∑
x∼v c(v , x).
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Eigenbasis I

We let n := |V | < +∞. Assume that P is irreducible and
reversible w.r.t. its stationary distribution π > 0. Define

〈f ,g〉π :=
∑
x∈V

π(x)f (x)g(x), ‖f‖2π := 〈f , f 〉π,

(Pf )(x) :=
∑

y

P(x , y)f (y).

We let `2(V , π) be the Hilbert space of real-valued functions on
V equipped with the inner product 〈·, ·〉π (equivalent to the
vector space (Rn, 〈·, ·〉π)).

Theorem

There is an orthonormal basis of `2(V , π) formed of
eigenfunctions {fj}nj=1 of P with real eigenvalues {λj}nj=1.
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Eigenbasis II
Proof: We work over (Rn, 〈·, ·〉π). Let Dπ be the diagonal matrix with π on the
diagonal. By reversibility,

M(x , y) :=

√
π(x)

π(y)
P(x , y) =

√
π(y)

π(x)
P(y , x) =: M(y , x).

So M = (M(x , y))x,y = D1/2
π PD−1/2

π , as a symmetric matrix, has real
eigenvectors {φj}n

j=1 forming an orthonormal basis of Rn with corresponding
real eigenvalues {λj}n

j=1. Define fj := D−1/2
π φj . Then

Pfj = PD−1/2
π φj = D−1/2

π D1/2
π PD−1/2

π φj = D−1/2
π Mφj = λjD−1/2

π φj = λj fj ,

and

〈fi , fj〉π = 〈D−1/2
π φi ,D−1/2

π φj〉π

=
∑

x

π(x)[π(x)−1/2φi (x)][π(x)−1/2φj (x)]

= 〈φi , φj〉.
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Eigenbasis III

Lemma
For all j 6= 1,

∑
x π(x)fj(x) = 0.

Proof: By orthonormality, 〈f1, fj〉π = 0. Now use the fact that f1 ≡ 1.

Let δx (y) := 1{x=y}.

Lemma

For all x , y,
∑n

j=1 fj(x)fj(y) = π(x)−1δx (y).

Proof: Using the notation of the theorem, the matrix Φ whose columns are
the φjs is unitary so ΦΦ′ = I. That is,

∑n
j=1 φj (x)φj (y) = δx (y), or∑n

j=1

√
π(x)π(y)fj (x)fj (y) = δx (y). Rearranging gives the result.
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Eigenbasis IV

Lemma

Let g ∈ `2(V , π). Then g =
∑n

j=1〈g, fj〉πfj .

Proof: By the previous lemma, for all x
n∑

j=1

〈g, fj〉πfj (x) =
n∑

j=1

∑
y

π(y)g(y)fj (y)fj (x) =
∑

y

π(y)g(y)[π(x)−1δx (y)] = g(x).

Lemma

Let g ∈ `2(V , π). Then ‖g‖2π =
∑n

j=1〈g, fj〉2π.

Proof: By the previous lemma,

‖g‖2
π =

∥∥∥∥∥∥
n∑

j=1

〈g, fj〉πfj

∥∥∥∥∥∥
2

π

=

〈
n∑

i=1

〈g, fi〉πfi ,
n∑

j=1

〈g, fj〉πfj

〉
π

=
n∑

i,j=1

〈g, fi〉π〈g, fj〉π〈fi , fj〉π,
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Eigenvalues I

Let P be finite, irreducible and reversible.

Lemma
Any eigenvalue λ of P satisfies |λ| ≤ 1.

Proof: Pf = λf =⇒ |λ|‖f‖∞ = ‖Pf‖∞ = maxx |
∑

y P(x , y)f (y)| ≤ ‖f‖∞
We order the eigenvalues 1 ≥ λ1 ≥ · · · ≥ λn ≥ −1. In fact:

Lemma
We have λ1 = 1 and λ2 < 1. Also we can take f1 ≡ 1.

Proof: Because P is stochastic, the all-one vector is a right eigenvector with
eigenvalue 1. Any eigenfunction with eigenvalue 1 is P-harmonic. By
Corollary 3.22 for a finite, irreducible chain the only harmonic functions are
the constant functions. So the eigenspace corresponding to 1 is
one-dimensional. Since all eigenvalues are real, we must have λ2 < 1.
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Eigenvalues II

Theorem (Rayleigh’s quotient)
Let P be finite, irreducible and reversible with respect to π. The
second largest eigenvalue is characterized by

λ2 = sup

{
〈f ,Pf 〉π
〈f , f 〉π

: f ∈ `2(V , π),
∑

x

π(x)f (x) = 0

}
.

(Similarly, λ1 = supf∈`2(V ,π)
〈f ,Pf 〉π
〈f ,f 〉π .)

Proof: Recalling that f1 ≡ 1, the condition
∑

x π(x)f (x) = 0 is equivalent to
〈f1, f 〉π = 0. For such an f , the eigendecomposition is

f =
n∑

j=1

〈f , fj〉πfj =
n∑

j=2

〈f , fj〉πfj ,
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Eigenvalues III

and

Pf =
n∑

j=2

〈f , fj〉πλj fj ,

so that

〈f ,Pf 〉π
〈f , f 〉π

=

∑n
i=2

∑n
j=2〈f , fi〉π〈f , fj〉πλj〈fi , fj〉π∑n

j=2〈f , fj〉2π
=

∑n
j=2〈f , fj〉

2
πλj∑n

j=2〈f , fj〉2π
≤ λ2.

Taking f = f2 achieves the supremum.
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Spectral decomposition I

Theorem
Let {fj}nj=1 be the eigenfunctions of a reversible and irreducible
transition matrix P with corresponding eigenvalues {λj}nj=1, as
defined previously. Assume λ1 ≥ · · · ≥ λn. We have the
decomposition

P t (x , y)

π(y)
= 1 +

n∑
j=2

fj(x)fj(y)λt
j .
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Spectral decomposition II

Proof: Let F be the matrix whose columns are the eigenvectors {fj}n
j=1 and let

Dλ be the diagonal matrix with {λj}n
j=1 on the diagonal. Using the notation of

the eigenbasis theorem,

D1/2
π P tD−1/2

π = M t = (D1/2
π F )Dt

λ(D1/2
π F )′,

which after rearranging becomes

P tD−1
π = FDt

λF ′.
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Example: two-state chain I

Let V := {0,1} and, for α, β ∈ (0,1),

P :=

(
1− α α
β 1− β

)
.

Observe that P is reversible w.r.t. to the stationary distribution

π :=

(
β

α + β
,

α

α + β

)
.

We know that f1 ≡ 1 is an eigenfunction with eigenvalue 1. As
can be checked by direct computation, the other eigenfunction
(in vector form) is

f2 :=

(√
α

β
,−
√
β

α

)′
,

with eigenvalue λ2 := 1−α− β. We normalized f2 so ‖f2‖2π = 1.
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Example: two-state chain II

The spectral decomposition is therefore

P tD−1
π =

(
1 1
1 1

)
+ (1− α− β)t

(
α
β −1
−1 β

α

)
.

Put differently,

P t =

(
β

α+β
α

α+β
β

α+β
α

α+β

)
+ (1− α− β)t

(
α

α+β − α
α+β

− β
α+β

β
α+β

)
.

(Note for instance that the case α + β = 1 corresponds to a
rank-one P, which immediately converges.)
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Example: two-state chain III

Assume β ≥ α. Then

d(t) = max
x

1
2

∑
y

|P t (x , y)− π(y)| =
β

α + β
|1− α− β|t .

As a result,

tmix(ε) =


log
(
εα+ββ

)
log |1− α− β|

 =


log ε−1 − log

(
α+β
β

)
log |1− α− β|−1

 .
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Spectral decomposition: again

Recall:

Theorem
Let {fj}nj=1 be the eigenfunctions of a reversible and irreducible
transition matrix P with corresponding eigenvalues {λj}nj=1, as
defined previously. Assume λ1 ≥ · · · ≥ λn. We have the
decomposition

P t (x , y)

π(y)
= 1 +

n∑
j=2

fj(x)fj(y)λt
j .
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Spectral gap

From the spectral decomposition, the speed of convergence of
P t (x , y) to π(y) is governed by the largest eigenvalue of P not
equal to 1.

Definition (Spectral gap)
The absolute spectral gap is γ∗ := 1− λ∗ where
λ∗ := |λ2| ∨ |λn|. The spectral gap is γ := 1− λ2.

Note that the eigenvalues of the lazy version 1
2P + 1

2 I of P are
{1

2(λj + 1)}nj=1 which are all nonnegative. So, there, γ∗ = γ.

Definition (Relaxation time)
The relaxation time is defined as

trel := γ−1
∗ .
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Example continued: two-state chain

There two cases:
α + β ≤ 1: In that case the spectral gap is γ = γ∗ = α + β
and the relaxation time is trel = 1/(α + β).
α + β > 1: In that case the spectral gap is
γ = γ∗ = 2− α− β and the relaxation time is
trel = 1/(2− α− β).
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Mixing time v. relaxation time I

Theorem
Let P be reversible, irreducible, and aperiodic with stationary
distribution π. Let πmin = minx π(x). For all ε > 0,

(trel − 1) log
(

1
2ε

)
≤ tmix(ε) ≤ log

(
1

επmin

)
trel.

Proof: We start with the upper bound. By the lemma, it suffices to find t such
that s(t) ≤ ε. By the spectral decomposition and Cauchy-Schwarz,∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣ ≤ λt

∗

n∑
j=2

|fj (x)fj (y)| ≤ λt
∗

√√√√ n∑
j=2

fj (x)2
n∑

j=2

fj (y)2.

By our previous lemma,
∑n

j=2 fj (x)2 ≤ π(x)−1. Plugging this back above,∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣ ≤ λt

∗
√
π(x)−1π(y)−1 ≤ λt

∗

πmin
=

(1− γ∗)t

πmin
≤ e−γ∗t

πmin
.
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Mixing time v. relaxation time II
The r.h.s. is less than ε when t ≥ log

(
1

επmin

)
trel.

For the lower bound, let f∗ be an eigenfunction associated with an eigenvalue
achieving λ∗ := |λ2| ∨ |λn|. Let z be such that |f∗(z)| = ‖f∗‖∞. By our
previous lemma,

∑
y π(y)f∗(y) = 0. Hence

λt
∗|f∗(z)| = |P t f∗(z)| =

∣∣∣∣∣∑
y

[P t (z, y)f∗(y)− π(y)f∗(y)]

∣∣∣∣∣
≤ ‖f∗‖∞

∑
y

|P t (z, y)− π(y)| ≤ ‖f∗‖∞2d(t),

so d(t) ≥ 1
2λ

t
∗. When t = tmix(ε), ε ≥ 1

2λ
tmix(ε)
∗ . Therefore

tmix(ε)

(
1
λ∗
− 1
)
≥ tmix(ε) log

(
1
λ∗

)
≥ log

(
1
2ε

)
.

The result follows from
(

1
λ∗
− 1
)−1

=
(

1−λ∗
λ∗

)−1
=
(

γ∗
1−γ∗

)−1
= trel − 1.
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Random walk on the cycle I

Consider simple random walk on an n-cycle. That is,
V := {0,1, . . . ,n − 1} and P(x , y) = 1/2 if and only if
|x − y | = 1 mod n.

Lemma (Eigenbasis on the cycle)
For j = 0, . . . ,n − 1, the function

fj(x) := cos
(

2πjx
n

)
, x = 0,1, . . . ,n − 1,

is an eigenfunction of P with eigenvalue

λj := cos
(

2πj
n

)
.
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Random walk on the cycle II

Proof: Note that, for all i , x ,∑
y

P(x , y)fj (y) =
1
2

[
cos

(
2πj(y − 1)

n

)
+ cos

(
2πj(y + 1)

n

)]

=
1
2

[
ei 2πj(y−1)

n + e−i 2πj(y−1)
n

2
+

ei 2πj(y+1)
n + e−i 2πj(y+1)

n

2

]

=

[
ei 2πjy

n + e−i 2πjy
n

2

][
ei 2πj

n + e−i 2πj
n

2

]

=

[
cos

(
2πjy

n

)][
cos

(
2πj
n

)]
= cos

(
2πj
n

)
fj (y).
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Random walk on the cycle III

Theorem (Relaxation time on the cycle)
The relaxation time for lazy simple random walk on the cycle is

trel =
2

1− cos
(2π

n

) = Θ(n2).

Proof: The eigenvalues are

1
2

[
cos

(
2πj
n

)
+ 1
]
.

The spectral gap is therefore 1
2 (1− cos

( 2π
n

)
). By a Taylor expansion,

1− cos
(

2π
n

)
=

4π2

n2 + O(n−4).

Since πmin = 1/n, we get tmix(ε) = O(n2 log n) and
tmix(ε) = Ω(n2). We showed before that in fact tmix(ε) = Θ(n2).
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Random walk on the cycle IV

In this case, a sharper bound can be obtained by working directly with the
spectral decomposition. By Jensen’s inequality,

4‖P t (x , ·)− π(·)‖2
TV =

{∑
y

π(y)

∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣
}2

≤
∑

y

π(y)

(
P t (x , y)

π(y)
− 1
)2

=

∥∥∥∥∥∥
n∑

j=2

λt
j fj (x)fj

∥∥∥∥∥∥
2

π

=
n∑

j=2

λ2t
j fj (x)2.

The last sum does not depend on x by symmetry. Summing over x and
dividing by n, which is the same as multiplying by π(x), gives

4‖P t (x , ·)− π(·)‖2
TV ≤

∑
x

π(x)
n∑

j=2

λ2t
j fj (x)2 =

n∑
j=2

λ2t
j

∑
x

π(x)fj (x)2 =
n∑

j=2

λ2t
j ,

where we used that ‖fj‖2
π = 1.
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Random walk on the cycle V

Consider the non-lazy chain with n odd. We get

4d(t)2 ≤
n∑

j=2

cos
(

2πj
n

)2t

= 2
(n−1)/2∑

j=1

cos
(
πj
n

)2t

.

For x ∈ [0, π/2), cos x ≤ e−x2/2. (Indeed, let h(x) = log(ex2/2 cos x). Then
h′(x) = x − tan x ≤ 0 since (tan x)′ = 1 + tan2 x ≥ 1 for all x and tan 0 = 0.
So h(x) ≤ h(0) = 0.) Then

4d(t)2 ≤ 2
(n−1)/2∑

j=1

exp
(
−π

2j2

n2 t
)
≤ 2 exp

(
−π

2

n2 t
) ∞∑

j=1

exp
(
−π

2(j2 − 1)

n2 t
)

≤ 2 exp
(
−π

2

n2 t
) ∞∑
`=0

exp
(
−3π2t

n2 `

)
=

2 exp
(
−π

2

n2 t
)

1− exp
(
− 3π2t

n2

) ,
where we used that j2 − 1 ≥ 3(j − 1) for all j = 1, 2, 3, . . .. So tmix(ε) = O(n2).
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Random walk on the hypercube I

Consider simple random walk on the hypercube
V := {−1,+1}n where x ∼ y if ‖x − y‖1 = 1. For J ⊆ [n], we let

χJ(x) =
∏
j∈J

xj , x ∈ V .

These are called parity functions.

Lemma (Eigenbasis on the hypercube)

For all J ⊆ [n], the function χJ is an eigenfunction of P with
eigenvalue

λJ :=
n − 2|J|

n
.
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Random walk on the hypercube II

Proof: For x ∈ V and i ∈ [n], let x [i] be x where coordinate i is flipped. Note
that, for all J, x ,

∑
y

P(x , y)χJ (y) =
n∑

i=1

1
n
χJ (x [i]) =

n − |J|
n

χJ (x)− |J|
n
χJ (x) =

n − 2|J|
n

χJ (x).
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Random walk on the hypercube III

Theorem (Relaxation time on the hypercube)
The relaxation time for lazy simple random walk on the
hypercube is

trel = n.

Proof: The eigenvalues are n−|J|
n for J ⊆ [n]. The spectral gap is

γ∗ = γ = 1− n−1
n = 1

n .

Because |V | = 2n, πmin = 1/2n. Hence we have tmix(ε) = O(n2)
and tmix(ε) = Ω(n). We have shown before that in fact
tmix(ε) = Θ(n log n).
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Random walk on the hypercube IV

As we did for the cycle, we obtain a sharper bound by working directly with
the spectral decomposition. By the same argument,

4d(t)2 ≤
∑
J 6=∅

λ2t
J .

Consider the lazy chain again. Then

4d(t)2 ≤
∑
J 6=∅

(
n − |J|

n

)2t

=
n∑
`=1

(
n
`

)(
1− `

n

)2t

≤
n∑
`=1

(
n
`

)
exp

(
−2t`

n

)

=

(
1 + exp

(
−2t

n

))n

− 1.

So tmix(ε) ≤ 1
2 n log n + O(n).
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Some remarks about infinite networks I

Remark (Recurrent case)
The previous results cannot in general be extended to infinite
networks. Suppose P is irreducible, aperiodic and positive
recurrent. Then it can be shown that, if π is the stationary
distribution, then for all x

‖P t (x , ·)− π(·)‖TV → 0,

as t → +∞. However, one needs stronger conditions on P than
reversibility for the spectral theorem to apply, e.g., compactness
(that is, P maps bounded sets to relatively compact sets
(i.e. whose closure is compact)).
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Some remarks about infinite networks II

Example (A positive recurrent chain whose P is not compact)

For p < 1/2, let (Xt ) be the birth-death chain with
V := {0,1,2, . . .}, P(0,0) := 1− p, P(0,1) = p,
P(x , x + 1) := p and P(x , x − 1) := 1− p for all x ≥ 1, and
P(x , y) := 0 if |x − y | > 1. As can be checked by direct
computation, P is reversible with respect to the stationary
distribution π(x) = (1− γ)γx for x ≥ 0 where γ := p

1−p . For
j ≥ 1, define gj(x) := π(j)−1/2

1{x=j}. Then ‖gj‖2π = 1 for all j so
{gj}j is bounded in `2(V , π). On the other hand,

Pgj(x) = pπ(j)−1/2
1{x=j−1} + (1− p)π(j)−1/2

1{x=j+1}.
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Some remarks about infinite networks III

Example (Continued)
So

‖Pgj‖2π = p2π(j)−1π(j − 1) + (1− p)2π(j)−1π(j + 1) = 2p(1− p).

Hence {Pgj}j is also bounded. However, for j > `

‖Pgj − Pg`‖2π ≥ (1− p)2π(j)−1π(j + 1) + p2π(`)−1π(`− 1)

= 2p(1− p).

So {Pgj}j does not have a converging subsequence and
therefore is not relatively compact.
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Some remarks about infinite networks IV

Most random walks on infinite networks we have encountered
so far were transient or null recurrent. In such cases, there is
no stationary distribution to converge to. In fact:

Theorem
If P is an irreducible chain which is either transient or null
recurrent, we have for all x , y

lim
t

P t (x , y) = 0.

Proof: In the transient case, since
∑

t 1Xt=y < +∞ a.s. under Px , we have∑
t P t (x , y) = Ex [

∑
t 1Xt=y ] < +∞ so P t (x , y)→ 0.
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